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Abstract

In this thesis we study non-Hermitian aspects of exciton-polariton Bose-Einstein conden-

sates. Exciton-polaritons are hybrid matter-light quasiparticles created when microcavity

photons are strongly coupled to quantum well excitons, which are bound electron-hole

pairs. Being composite bosons with a very low effective mass, exciton-polaritons can

undergo Bose-Einstein condensation at relatively high temperatures - from cryogenic to

as high as room temperature in some semiconductors. Exciton-polariton condensates

are an experimentally attractive system due to the high transition temperature and

ease of in-situ diagnostics. They are also fundamentally non-Hermitian because they

exist in a balanced landscape of loss and gain, where excitation by a pump laser

counteracts the radiative decay of polaritons. Because of their hybrid light-matter nature

exciton-polariton condensates are also an ideal platform for designing new optoelectronic

devices, and non-Hermitian effects may be useful to this end.

Hermiticity is posited as an axiom of quantum mechanics in order to ensure that ener-

gies are real. However in recent decades it has been shown that a class of non-Hermitian

Hamiltonians which adhere to a weaker condition of symmetry under simultaneous spatial

and time reversal (PT symmetry) can still have real energies. Many of the essential

features of Hermitian quantum mechanics can be reproduced with such Hamiltonians.

In general PT symmetric systems exhibit two phases, one in which eigenvalues are

real, and another in which the eigenvectors spontaneously break the PT symmetry and

eigenvalues are complex. The transition occurs at an exceptional point, a non-Hermitian

degeneracy where eigenstates coincide as well as eigenvalues. EPs can also be observed in

non-Hermitian systems lacking PT symmetry. This has led to a collection of interesting

experiments in optical and other systems that provide analogues of non-Hermitian quan-

tum mechanics because loss and gain are represented by an imaginary potential. In these

systems PT symmetry breaking has allowed for enhanced sensing, loss-induced trans-

parency, gain-induced suppression of lasing, and sensitive switching. Exciton-polariton

condensates are inherently non-Hermitian as they experience loss and gain. However this

aspect has been largely overlooked, apart from a few experiments which demonstrate

EPs. Experiments in optical and other systems suggest that non-Hermitian effects in

polaritons may be harnessed to design optoelectronic devices. In addition, the demon-

stration of PT symmetry breaking in yet another system is of inherent intellectual interest.

We aim to provide theoretical guidance for current and future experiments that exploit

the non-Hermiticity of polariton condensates. One chapter focuses on a very simple PT

symmetric system - a PT symmetric square well. This system is simple enough to be

analytically tractable, but also exhibits interesting and subtle behaviour. We show how

a nearly-PT symmetric square well can be implemented for polaritons using established

trapping techniques. We further show that unavoidable PT asymmetry removes the PT

symmetry breaking transition, but that most of this behaviour can easily be restored.
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In support of recent experiments, another part of the work focuses on whispering

gallery modes (WGMs) of polariton condensates in a shallow circular trap. We show

that an interesting experimental effect - a robust blueshift of half a free spectral range

under certain pumping conditions - can be attributed to coupling with a non-Hermitian

resonator. We also discuss the viability of various schemes for reaching EPs of polariton

WGMs, and present preliminary numerical results which show some of these schemes are

viable.

The research presented in this thesis provides a road map for future experimental and

theoretical work that will harness non-Hermitian effects beyond the observation of EPs

in polariton condensates.
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Chapter 1

Introduction

1.1 Exciton-Polaritons

Exciton-polaritons are 2D quasiparticles that arise from strong coupling between optical

microcavity modes and quantum well excitons. As composite bosons with a very small

effective mass, they can undergo bose-einstein condensation at fairly high temperatures.

In this section we review the basics of exciton-polaritons, and of exciton-polariton bose-

einstein condensation. Our presentation of these topics follows that in Ref. [1]. We then

present the accepted mean-field model used to describe experiments with exciton-polariton

condensates and review methods of creating potentials for exciton-polaritons. After this,

we summarise some interesting features of non-Hermitian systems including real spectra

of Hamiltonians possessing parity-time symmetry, and exceptional points, which are non-

Hermitian degeneracies. We review results from experiments in a few non-Hermitian

systems, and briefly discuss nonlinear PT symmetric systems.

1.1.1 Optical Microcavities

Optical microcavities consist of two mirrors enclosing a thin layer of optical medium.

High quality mirrors can be made from distributed Bragg reflectors (DBRs), which

consist of alternating layers of two materials with different refractive indices, illustrated

in Figure 1.1. Interference between light reflected and transmitted by the various layers

leads to a stop-band - a region of very high reflectively - at certain wavelengths as shown

in Figure 1.2. The high reflectivity of DBRs allows for microcavities with exceptionally

high quality factors - typically on the order of 105-106, resulting in long photon lifetimes.

The mirror arrangement in a microcavity leads to confinement of the electric field in the

direction perpendicular to the mirror planes, and hence quantisation of the perpendicular

component of the photon wave vector, which is given as

k⊥ = nc
2π

λc
, (1.1)

where nc is the refractive index of the cavity, and λc is the wavelength of the cavity mode.

Upon decomposing the photon wave vector in to perpendicular and in-plane components,

the energy of the cavity mode can be expressed as

Ecav =
~c
nc

√
k2
‖ + k2

⊥, (1.2)

1
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Figure 1.1: Schematic of a DBR microcavity used to produce exciton-polaritons. A thin
quantum well with spacer material is sandwiched between two DBRs which confine pho-
tons. Reproduced from Ref. [1].

Figure 1.2: Reflectance of a DBR microcavity and electric field distribution inside the
microcavity. Reproduced from Ref. [1].
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where k‖ is the component in the direction parallel to the mirrors. Confined photons have

low in-plane momentum, so expanding Equation (1.2) around k‖ = 0 yields

Ecav ≈ Ecav(k‖ = 0) +
~2k2
‖

2mcav
. (1.3)

The first term represents the rest energy of a cavity mode photon whereas the second term

represents the kinetic energy contribution of in-plane motion. Consequently, confinement

endows trapped photons with an effective mass given by

mcav =
Ecav(k‖ = 0)

c2n2
c

. (1.4)

Typical effective masses are very low - around 10−5me− .

Figure 1.3: Polariton dispersions and corresponding Hopfield coefficients for detuning,
∆E = Eexc(0)− Ecav(0) equal to: (a) 2g0, (b) 0, (c) −2g0. Dispersions of quantum well
excitons and cavity photons are shown with dotted lines. Reproduced from Ref. [1].

1.1.2 Excitons

When an electron is excited to the valence band of a semiconductor it leaves behind a

hole - a region of excess positive charge. The electron and hole interact via the Coulomb

force, resulting in a bound pair - a neutral composite quasiparticle called an exciton,
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analogous to a hydrogen atom1. Dielectric screening of the electric field reduces the

effective strength of the Coulomb force, leading to large Bohr radius and low binding

energy of excitons compared to hydrogen atoms. Typical values are aB = 7 nm and

EB = 5 meV. As composite quasiparticles, excitons behave as bosons for a bulk excitation

in GaAs below the Mott density. Moreover, excitons present a dipole that can interact

with the electric field.

In order to enhance the interaction with photons, excitons are confined to two di-

mensions. Confinement is achieved in a quantum well - a thin layer of semiconductor

material surrounded by layers with higher bandgaps, which results in a confining poten-

tial. The quantum well is narrow enough that only one transverse mode is supported. This

confinement results in a smaller Bohr radius and increased binding energy and oscillator

strength.

1.1.3 Exciton-Polaritons

When a quantum well is placed at the antinode of a microcavity mode, excitons interact

strongly with the optical mode. If the coupling rate between the excitons and the cavity

mode is much larger than the relevant decay rates, a photon can interact with excitons

many times before leaking from the cavity. The system is then best viewed in terms

of new eigenstates, exciton-polaritons which are composite quasiparticles that are part

photon and part exciton. Strong coupling is possible because of the high quality factor of

semiconductor microcavities with DBR, and the enhanced optical interaction achieved by

confining excitons to a quantum well.

More formally, under the rotating wave approximation the Hamiltonian can be decom-

posed into parts representing the cavity modes, the excitons, and their interaction. That

is,

Ĥ = Ĥcav + Ĥexc + ĤI

=
∑

Ecav(k‖, kc)â
†
k‖
âk‖ +

∑
Eexc(k‖)b̂

†
k‖
b̂k‖ + g0

∑(
â†k‖ b̂k‖ + âk‖ b̂

†
k‖

)
, (1.5)

where â†k‖ and b̂†k‖ are creation operators for photons and excitons with in-plane momentum

k‖ and kc = k · ẑ, is a longitudinal wavenumber determined by the cavity resonance, the

ẑ direction is perpendicular to the plane of the mirrors, and g0 is the strength of the

interaction between the excitons and the photons. This Hamiltonian may be diagonalised

by a transformation of the form

P̂ †k‖ = Xk‖ b̂k‖ + Ck‖ âk‖ ,

Q̂†k‖ = −Ck‖ b̂k‖ +Xk‖ âk‖ , (1.6)

to yield

Ĥ =
∑

ELP(k‖)P̂
†
k‖
P̂k‖ +

∑
EUP(k‖)Q̂

†
k‖
Q̂k‖ , (1.7)

1There are a number of different types of excitons. Experiments in polariton condensation utilise
Wannier-Mott excitons, which have low binding energies and a radius larger than the crystal lattice spacing.
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from which we can see that P̂ †k‖ and Q̂†k‖ are creation operators for the new eigenmodes

of the system, which are superpositions of photons and excitons, called upper and lower

polaritons respectively. Experimental realisations of polariton condensation focus on

lower polaritons because they represent the ground state of the system in the strong

coupling regime.

The numbers Xk‖ and Ck‖ are called the Hopfield coefficients [2]. They represent the

photonic and excitonic fractions of polaritons, and determine many of the properties of

polaritons. Writing the exciton-photon detuning as ∆E(k‖) = Eexc(k‖)−Ecav(k‖, kc), the

Hopfield coefficients are

|Xk‖ |
2 =

1

2

1 +
∆E(k‖)√

∆E(k‖)2 + 4g2
0

 ,

|Ck‖ |
2 =

1

2

1−
∆E(k‖)√

∆E(k‖)2 + 4g2
0

 , (1.8)

and the polariton energies are

ELP,UP(k‖) =
1

2

(
Eexc + Ecav ±

√
4g2

0 + (Eexc − Ecav)2

)
. (1.9)

For low in-plane momentum, ~2k2
‖/2mcav � 2g0, we can expand Equation (1.9) in k‖ to

yield

ELP, UP(k‖) ≈ ELP, UP(0) +
~2k2
‖

2mLP, UP
, (1.10)

from which we can see that polaritons are endowed with an effective mass from the in-plane

momentum. The effective masses are given by

1

mLP
=
|X|2

mexc
+
|C|2

mcav
,

1

mUP
=
|C|2

mexc
+
|X|2

mcav
. (1.11)

Since the photon effective mass is much less than the exciton mass, the polariton effective

masses are well-approximated as

mLP(k‖ ≈ 0) ≈ mcav

|C|2
,

mUP(k‖ ≈ 0) ≈ mcav

|X|2
. (1.12)

Typical values of mLP range from 10−4me− , to 10−5me− , and depend strongly on the

detuning. The low effective mass of polaritons is one of a few key properties that make

them an attractive platform for bose-einstein condensation [1].

Figure 1.3 shows the Hopfield coefficients and polariton energies as a function of k‖
for several different values of the detuning. Note that at high momenta the dispersion
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of lower polaritons is effectively flat, reflecting the excitonic component. The effective

mass, which is related to the gradient of the dispersion, varies by up to four orders of

magnitude depending on the momentum.

Excitons decay radiatively, and photons leak from the microcavity, so exciton-

polaritons have a decay rate which is given as

γLP = |X|2γexc + |C|2γcav,

γUP = |C|2γexc + |X|2γcav. (1.13)

Lifetimes, i.e. inverse decay rates as high as γ−1
cav ≈ 200 ps are typical [3]. Because

γ−1
exc ≈ 1 ns, the lifetime of polaritons is mainly determined by the cavity photon lifetime,

and hence the cavity quality factor.

The energy, effective mass, and lifetime of exciton-polaritons all depend on the detun-

ing, which is determined by the energy of the cavity mode, and hence the cavity thickness.

Typical microcavity samples are wedge-shaped, i.e. the length of the microcavity varies

across the sample. By choosing different positions on the sample, the polariton properties

may be varied.

Exciton-polaritons have a pseudospin degree of freedom resulting from the polarisation

of the cavity photons. We will neglect this, however many experiments explore spin effects.

A detailed review is given in [4].

1.1.4 Bose Einstein Condensation of Exciton-Polaritons

Below a critical temperature or above a critical density, dilute bosons gases exhibit signifi-

cant occupation of the ground state, leading to the appearance of a coherent matter wave,

a bose-einstein condensate. A well-known heuristic argument for this phenomenon is that

the wavepackets of the particles, whose size is estimated by the de Broglie wavelength,

begin to overlap significantly. The thermal de Broglie wavelength is given by

λT =

√
2π~2

kBmT
, (1.14)

where kB is the Boltzmann constant, m is the particle mass, and T is the temperature.

Condensation occurs at a critical temperature where λT becomes comparable to the mean

interparticle distance. Since λT decreases with m, a lower mass results in a lower critical

temperature.

Bose-einstein condensation was first observed in dilute gases of alkali atoms [8]. These

atoms are relatively heavy, resulting in a low critical temperature, on the order of 1 nK.

However laser cooling techniques which rely on the electronic structure of alkali atoms

in combination with evaporative cooling in magnetic traps allows these temperatures to

be reached. Achieving bose-einstein condensation in alkali atoms requires sophisticated

cooling and trapping techniques, and isolation from the environment.
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(a)

(b)

Figure 1.4: Schematics of the microcavity and BEC formation. (a): microcavity formed by
two DBRs with a quantum well placed at the antinode of the cavity resonance. Adapted
from Ref. [5]. (b): incoherent excitation scheme. Quantum well free carrier states are
excited by CW pumping. They relax to the lower polariton branch by various processes.
Relaxation continues down the lower polariton branch until a “bottleneck” momentum
is reached [6]. At this point, the gradient of the dispersion relation sharply increases,
which restricts further relaxation because of the requirement to simultaneously lose a
large amount of energy and a small amount of momentum in a collision. A significant
population forms at this momentum, constituting a reservoir, some of which condenses
by stimulated scattering. Leakage of cavity of photons from decaying excitons allows for
measurement of the condensate. Reproduced from Ref. [7].
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Figure 1.5: Photoluminescence of a system of exciton-polaritons undergoing bose-einstein
condensation. (a): near-field emission intensity indicating polariton density, (b): disper-
sion. Below the threshold power, the emission is widely spread in energy and momentum,
roughly reflecting the polariton dispersion. Above threshold, emission is concentrated near
k‖ = 0. Reproduced from Ref. [5].
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As exciton-polaritons are composite bosons at low densities, they can also undergo

bose-einstein condensation. The effective mass of exciton-polaritons is very low, resulting

in a critical temperature much higher than that of alkali atoms. Typical values range

from 1 K to room temperature, which can be achieved with simple cryogenic techniques

or no cooling at all. Table 1.1 compares the parameters of a few different systems used in

BEC research. In contrast to neutral atoms, exciton-polaritons have finite lifetimes, often

shorter than the thermalisation time, and exciton-polariton condensates are typically

nonequilibrium systems, although cavities with very high Q factors have recently lead to

observations of polariton condensates in thermal equilibrium [3]. Furthermore, polariton

condensates experience loss and gain so condensation is also a matter of dynamical

equilibrium, and polariton condensates are inherently non-Hermitian. In contrast to

neutral atoms, where condensation is driven by a decrease in temperature, polariton

condensation is driven by density as we outline below in Section 1.2. Some of these

issues are discussed in relation to the definition of bose-einstein condensation in Ref. [1, 9].

Table 1.1: Comparison of parameters for some BEC systems. The larger Bohr radius
of polaritons compared to atoms is more than compensated by the extremely low effec-
tive mass. As indicated by the last row, thermalisation times are typically shorter than
polariton lifetimes, although recent experiments report complete thermalisation using mi-
crocavities with very high Q factors [3]. Reproduced from Ref. [1].

Spontaneous bose-einstein condensation of exciton-polaritons requires only non-

resonant laser excitation. Free carriers are injected well above the lower polariton energy

by the pump laser. They relax down the lower polariton branch due to scattering

and interactions with phonons. These processes are greatly suppressed at a certain

“bottleneck” momentum, at which the decreasing energy density of states and polariton

lifetime result in the accumulation of a significant population, which acts as an incoherent

reservoir. Stimulated scattering from the reservoir to k‖ ≈ 0 states results in Bose

Einstein condensation around k‖ ≈ 0. This process is illustrated in Figure 1.5. The exact

dynamics of this process can be studied using semiclassical Boltzmann rate equations [1],

or Keldysh field theory [10, 11]. Resonant excitation can also be used to excite polaritons

at a given in-plane momentum by tuning the angle of the pump laser, but we consider

only non-resonant excitation.

Polariton condensates are very experimentally accessible. Light leaks from the

microcavity, so the condensate density can be inferred from near-field photoluminescence.

Conservation of momentum implies that there is a one-to-one correspondence between the

polariton momentum and the angle of the emitted light, so angle-resolved measurements
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of the cavity photoluminescence characterise the momentum distribution. Spectroscopic

measurements of the photoluminescence allow one to measure spatial energy profiles and

also the dispersion. Interferometry can also be used to access the phase of the condensate.

As explained in Section 1.1.3, wedge-shaped cavities allow one to access a wide range of

polariton parameters, ranging from very photonic to very excitonic polaritons.

1.2 Mean-Field Models of Exciton-Polariton Condensates

A mean field model for exciton-polariton condensates has not yet been derived from

microscopic theory. However, a simple phenomenological model has been successful in

describing most experimental phenomena. This model is based on a modification of the

Gross-Pitaevskii equation (GPE), which was rigorously derived for atomic condensates,

where the total atom number is fixed [12]. It describes the dynamics of the macroscopi-

cally populated state.

Mean-field approximations typically allow for analysis of quantum many body systems

that would be otherwise intractable. Field operators are replaced with complex numbers

representing their expectation value, and equations of motion for these expectation values

are derived from the Heisenberg equations of motion for the field operators. Quantum

fluctuations are neglected [12].

For atomic BECs, one first replaces the two-body interaction potential with a contact

potential. Applying a mean-field approximation then yields the GPE, which describes the

order parameter, ψ, of the condensate. The GPE reads

i~∂tψ(r, t) =

(
− ~2

2m
∇2 + V (r) + g|ψ|2

)
ψ, (1.15)

where m is the mass of a boson, V (r) is any external potential g is a measure of the

two-body interaction strength. The nonlinearity arises from boson-boson interactions.

The GPE is the mainstay of atomic BEC theory in the regime of weak interactions [12].

In contrast to atomic BECs, polariton BECs are inherently open systems. Polaritons

experience loss through radiative decay, and gain from stimulated scattering from the

reservoir population. They also interact with the reservoir. To account for this, loss, gain,

and interaction terms are added to the GPE to yield [13]

i~∂tψ(r, t) =

(
− ~2

2mLP
∇2 + V (r) + gC |ψ|2 + gRnR +

i~
2

(R[nR]− γC)

)
ψ, (1.16)

The term gRnR accounts for repulsive interactions with the reservoir population, the term

−i~γC/2 models polariton loss, and the term i~R[nr]/2 models gain from stimulated

scattering from the reservoir, which depends on the reservoir population.

It is then necessary to couple Equation (1.16) to an equation that describes the reservoir
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population. Reservoir polaritons are much heavier than polaritons near k‖ ≈ 0, so it is

reasonable to assume that the reservoir polaritons do not move relative to the condensate

polaritons. A simple rate equation for the reservoir, accounting for loss due to decay and

stimulated scattering, and gain from the laser pump therefore suffices. The equation for

the reservoir is then

∂tnR(r, t) = P (r, t)− γRnR −R[nR]|ψ|2, (1.17)

where the rate of reservoir injection P (r, t) models gain from the pump laser, and γR is

the radiative loss rate for reservoir polaritons. The gain rate is typically assumed to be

proportional to the reservoir population. That is, R[nR] = RnR, where R is a constant,

in both Equations (1.16) and (1.17). Together, Equations (1.16) and (1.17) are called the

open dissipative Gross Pitaevskii equation (ODGPE).

A common approximation illuminates the role of the pump laser. If the reservoir

timescales are much faster than the condensate timescales, we can adiabatically eliminate

the reservoir. Setting ∂tnR = 0 yields

nR = P
(
γR +R|ψ|2

)−1

≈ P

γR

(
1− R

γR
|ψ|2

)
, (1.18)

where we have expanded to the first order in condensate density in the second line. The

second term reflects depletion of the reservoir due to stimulated scattering into the conden-

sate. If the condensate density is low, or if R << γR, meaning that stimulated scattering

into the condensate is negligible compared to the reservoir loss rate, we can neglect the

second term to yield

nR =
P

γR
, (1.19)

in which the reservoir population is set only by the pump rate.

Substituting Equation (1.19) in to the ODGPE (Equation (1.16)) yields

i~∂tψ(r, t) =

(
− ~2

2m
∇2 + gC |ψ|2 +

gR
γR
P +

i~
2

(
RP

γR
− γC

))
ψ, (1.20)

which shows that the pump laser induces a real potential, gR
γR
P , and an imaginary

potential, i~
2
RP
γR

, which is a gain term. The real potential arises because of repulsive

interactions between the condensate and reservoir, and the imaginary part because

stimulated scattering from the reservoir increases the number of condensate polaritons.

The relative magnitude of the real and imaginary potentials can in principle be tuned

because adjusting the detuning changes both the polariton-reservoir interaction, gR and

in principle stimulated scattering rate, R, although the latter is a phenomenological

parameter.

It is easy to deduce from the ODGPE, Equations (1.16) and (1.17), that there is a

threshold power below which condensation will not occur. Assuming spatially homoge-

neous pumping and stationary solutions implies that, ψ(r, t) = e−iµtψ0 and nR(r, t) = n0
R.



12 Introduction

For a stationary solution, the condensate must experience zero net gain, so setting

i~(Rn0
R − γC)/2 = 0 in Equation (1.16) gives an expression for the reservoir density,

n0
R = γC/R. For a stationary solution we must also have ∂tnR = 0. From this, and the

expression for n0
R, Equation (1.17) implies

|ψ0|2 = (P − Pth)/γC , (1.21)

where the homogeneous threshold power is defined as Pth = γCγR/R. From this, we

can see that no condensate is present unless P > Pth. When this condition is met, the

pump injects enough reservoir carriers that stimulated scattering from the reservoir into

the condensate overcomes the radiative decay of polaritons. This reflects the fact that

bose-einstein condensation of exciton-polaritons is driven by increasing excitation density

rather that decreasing temperature.

Despite the phenomenological nature of the ODGPE, it has proven successful at

describing many experimental phenomena in polariton condensates [7, 14, 15]. In

addition, a slightly simplified form has been derived by applying approximations to the

optical Maxwell-Bloch equations [16]. Although it is a low-momentum approximation,

high momenta can be considered by replacing the kinetic energy term, which is − ~2
2m∇

2

in the effective mass approximation, with the polariton dispersion. Additional terms may

be added to model energy relaxation through interaction with phonons or by other means

[17, 18]. Fluctuations arising from scattering from the reservoir may be treated with a

truncated Wigner approach [19]. As an alternative to the mean field theory, Lindblad

equations for the evolution of the condensate density matrix have also been derived [20].

1.3 Creating Potentials for Exciton-Polaritons

Engineering potentials for polaritons allows for condensation in traps, which has led to

observation of a range of experimental phenomena, including robust switching between

quantum states [15, 21], and encircling of an exceptional point [7, 22]. Many techniques

have been developed [23], so we focus only on a few which are relevant to our work.

Polaritons can be trapped by inducing confinement for either the excitonic or photonic

part of the wavefunction. Confining the photonic component of the wavefunction is most

easily achieved by etching away parts of the cavity, for example using electron beam

lithography. Lateral confinement of photons due to the difference in refractive indices at

the semiconductor interface then introduces a strong potential for polaritons [24]. The

maturity of lithographic techniques means that complicated structures such as lattices of

coupled micropillars can be created [25]. However, etching down to the substrate leads to

significant polariton loss because of surface effects [23].

An alternative approach is to induce a weaker potential by inducing only a small

elongation to a part of the cavity. This is achieved with an etch-and-overgrowth technique,

whereby the bottom DBR, quantum well, and spacer are first manufactured. After this,

parts of the spacer layer are etched away, leaving a small local elongation. The upper

DBR is then grown on top of this structure. The cavity is therefore slightly elongated in
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the region where the spacer layer was not etched away [23, 26]. Such a structure is shown

in Figure 1.6. Locally elongating the microcavity lowers the energy of cavity modes,

and hence the energy of lower polaritons, thereby creating a trapping potential for lower

polaritons. For ideal DBRs which are tuned to the spacer frequency, a length change of

∆L causes an approximate shift of ∆ωC = −ωm∆L/LC in the resonant frequency of the

cavity, where ωm is the resonant frequency of the spacer and LC is the unaltered length

of the cavity [27]. For typical cavities an elongation on the order of nanometres causes

an energy shift on the order of millielectronvolts [26, 27]. Equation (1.9) shows that the

shift in lower polariton energy is approximately proportional to the shift in the cavity

mode energy. This technique allows for the creation of precisely shaped potentials with a

depth that can be chosen during fabrication, but which cannot be adjusted thereafter. It

is also worth mentioning that the difference in the detuning inside the elongated region

means that the effective mass and other polariton parameters differ inside the trap. Using

this technique, polariton condensation has been observed in both isolated traps [26] and

periodic lattices [28].

Another well-developed technique is optical trapping. The optical pump induces

a repulsive potential for polaritons due to two-body interactions with the reservoir

population, which is largely bound to the pump location. Such potentials are typically on

the order of several meV, which is sufficient to trap polaritons [29]. The great advantage

of this technique is that the trap shape, and to some extent the depth, can be manipulated

by reshaping the laser and adjusting its power. Spatial manipulation of the pump laser

can be accomplished with spatial light modulators. One limitation is that the potential

is altered by depletion of the reservoir due to stimulated scattering at high polariton

densities [30]. In addition, the laser pump induces an imaginary potential as well as a

real one, since stimulated scattering in to the condensate from the reservoir is a source of

gain. Therefore the pump-dependent potential is unavoidably non-Hermitian. Although

this could be seen as a limitation, it has in fact been exploited in several experiments.

The gain of a trapped state is primarily set by its overlap with the pump region, which

can be tuned by changing the width of the pump region while keeping the trap depth

and size of the interior constant. On the other hand, the energy of a trapped state can

be tuned by either increasing the trap depth, or decreasing the trap size, while keeping

the width of the pump region constant. This interplay between the real and imaginary

pump-dependent potential has been used to induce stable switching between trapped

states [15, 21], and also to steer trapped states to an exceptional point (see Section 1.4.2)

[7, 22]. The real and imaginary parts of the pump dependent potential are apparent

immediately in the ODGPE, Equation (1.20), once the reservoir is eliminated. It is

worth mentioning that both terms have different prefactors that depend on the polariton

parameters, and hence the detuning. So the relative magnitude of the real and imaginary

parts depends on the detuning.
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Figure 1.6: Schematic of a locally elongated microcavity fabricated using an etch-and-
overgrowth technique. The energy of the optical mode is lower in the elongated region,
resulting in a confining potential for exciton-polaritons. Reproduced from Ref. [27].

1.4 Non-Hermitian Systems and PT-Symmetric Quantum

Mechanics

1.4.1 PT Symmetric Quantum Mechanics

Hermiticity of the Hamiltonian is often viewed as a fundamental axiom of quantum

mechanics since it ensures not only that energies are real, but that time evolution is

unitary. However, Hermiticity is a sufficient but not necessary condition for this to

occur. Based first on numerical observations of non-Hermitian Hamiltonians that have

entirely real spectra, and later theoretical work, theories of non-Hermitian quantum

mechanics have been developed [31–34]. Although non-Hermitian Hamiltonians had been

considered before, for example to describe radioactive decay or resonances with nonzero

linewidth, it was tacitly assumed that loss and gain would have only small effects. In

fact, non-Hermiticity gives rise to a range of novel behaviours.

Chief among the theories developed is PT-symmetric quantum mechanics. The genesis

of this work was the observation and later proof that the spectrum of the non-Hermitian

Hamiltonian

Ĥ = p̂2 + ix̂3 (1.22)

is entirely real [35]. The reason for this remarkable fact is that despite being non-

Hermitian, the Hamiltonian (1.22) possesses a more subtle symmetry. It is unchanged

by simultaneous spatial inversion and time reversal. The spatial inversion operator, P̂ is

defined by its action on a wavefunction:

P̂ψ(x, t) = ψ(−x, t), (1.23)

as is the time reversal operator, T̂ :

T̂ψ(x, t) = ψ∗(x,−t). (1.24)

The complex conjugate appears because the T operator is antilinear. Since the Hamil-

tonian (1.22) is unchanged when both these operations are applied simultaneously, it is

called PT symmetric. Generally, a PT symmetric Hamiltonian is defined to be one which

commutes with the P̂ T̂ operator. For Hamiltonians without explicit time-dependence,
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time reversal simply corresponds to complex conjugation.

However, PT symmetry of the Hamiltonian is not sufficient to ensure real energies. It

only implies that energies occur in complex conjugate pairs, which can be seen by applying

the P̂ T̂ operator to both sides of the eigenvalue equation

Ĥψ = Eψ, (1.25)

which yields

Ĥ(P̂ T̂ψ) = E∗P̂ T̂ψ, (1.26)

noting that the Hamiltonian commutes with the P̂ T̂ operator, and P̂ is linear but T̂

is antilinear. This means that if ψ is an eigenstate with eigenvalue E, then P̂ T̂ψ is

also an eigenstate with eigenvalue E∗. In fact, the necessary and sufficient condition

for the energies to be real is that the eigenstates are also PT symmetric. The essential

reason for this condition can be seen by again applying the P̂ T̂ operator the eigenvalue

equation (1.25). The left hand side is equal to P̂ T̂ Ĥψ, which is simply equal to Ĥψ

if both the Hamiltonian and eigenfunction are PT symmetric. If the eigenfunction is

PT symmetric, the right hand side, P̂ T̂Eψ simplifies to E∗ψ, and we can therefore

conclude Eψ = E∗ψ, so the energy is real. The other direction is similar but the proof

is not simple if degeneracy of the eigenstates is considered [36]. The extra condition

is required simply because T̂ and hence P̂ T̂ is antilinear. If the P̂ T̂ operator were lin-

ear, eigenstates of Ĥ would also be eigenstates of the P̂ T̂ operator, since the two commute.

In practice, most PT symmetric systems exhibit two phases, one in which the eigen-

states are also PT symmetric, and the energies are real, and a second in which some of

the eigenstates are not PT symmetric, and the corresponding eigenvalues are complex.

Typically, this transition is controlled by a parameter that essentially measures the non-

Hermiticity of the system [36, 37]. For example, the PT symmetric Hamiltonian (1.22)

can be generalised as

Ĥ = p̂2 + x̂2(ix̂)δ, (1.27)

where the real parameter δ essentially measures the strength of the non-Hermitian part.

The spectrum is entirely real when and positive when δ ≥ 0. When −1 < δ < 0,

some eigenvalues are real and others are complex, and when δ < −1, there are no real

eigenvalues. In the PT asymmetric phase, the eigenstates spontaneously break the PT

symmetry of the Hamiltonian. The symmetry breaking transition is associated with

an exceptional point [31], a non-Hermitian degeneracy where eigenstates as well as

eigenvalues coincide [38] (see Section 1.4.2).

An more enlightening demonstration is given in the behaviour the two-level model with

a Hamiltonian

Ĥ(γ) =

(
ω + iγ δ

δ ω − iγ

)
, (1.28)

where all the parameters are real. This represents two coupled energy levels, one which
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experiences gain and the other loss. The parity operator is given by

P̂ =

(
0 1

1 0

)
, (1.29)

which swaps the levels, and the time reversal operator, T̂ simply corresponds to complex

conjugation. It is easy to verify that the Hamiltonian (1.28) commutes with the P̂ T̂ oper-

ator. This amounts to stating that exchanging the levels and interchanging loss and gain

leaves the system unchanged. The imaginary part of the diagonal elements, γ, quantifies

the degree of non-Hermiticity. The energies are

E± = ω ±
√
δ2 − γ2 (1.30)

and the eigenstates are

ψ± =

(
iγ±
√
δ−γ2

δ

1

)
. (1.31)

From (1.30), the eigenvalues are real when |γ| < |δ|. To confirm that the system is in the

PT symmetric phase, we have to also verify that the eigenstates are PT symmetric. To

this end, note that for |γ| < |δ|, the quantity
√
δ2 − γ2 is real and hence the first entry of

each of the eigenvectors (1.31) is a complex number with unit modulus. We can therefore

write

ψ+ =

(
eiα

1

)
, (1.32)

where α is real. This can be rescaled to

ψ̃+ =

(
eiα/2

e−iα/2

)
, (1.33)

which is clearly an eigenstate of the P̂ T̂ operator with eigenvalue 1. The same argument

applies to ψ−. However, when |γ| > |δ|, the first entry of each of the eigenstates (1.31) is

purely imaginary, so we can rewrite

ψ+ =

(
iA

1

)
, (1.34)

where A is real. Applying the P̂ T̂ operator yields

PTψ+ =

(
1

−iA

)
, (1.35)

from which it is clear that ψ+ is in general not an eigenstate of the P̂ T̂ operator2. An

identical argument holds for ψ−. When |γ| = |δ|, the eigenvalues are both E± = ω, and

the eigenstates are both ψ± = (iγ/δ, 1)T . To summarise, when |γ| < |δ|, the system

is in the PT symmetric phase - the eigenstates are PT symmetric and the eigenvalues

are real. When |γ| > |δ|, the system is in the broken symmetry phase - the eigenvalues

are complex conjugates and the eigenstates are not PT symmetric. The transition

between these two regions, |γ| = |δ| corresponds to an exceptional point - both the

2It is easy to see that P̂ T̂ψ+ can only be an eigenstate of the P̂ T̂ operator if A2 = 1. Since
A = (γ +

√
δ2 − γ2)/δ, this corresponds only to the symmetry breaking transition, |γ| = |δ|.
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eigenvalues and eigenstates coincide3. Note also that in the PT symmetric phase each of

the eigenstates are equally-weighted linear combinations of a mode localised in the gain

region and one localised in the loss region, which explains why the eigenvalues remain

real. In the broken PT symmetry phase, the weights become unequal - for large γ,

the quantity A in Equation (1.35) is also large, and ψ+ consists mostly of the active mode.

Most realisations of PT symmetric systems use loss and gain to create potentials that

are PT symmetric. The Hamiltonian of a particle moving in a potential V̂ (x) is given by

Ĥ =
p̂2

2m
+ V̂ (x). (1.36)

Since the first term is PT symmetric4, this Hamiltonian is PT symmetric when

ReV (x) = ReV (−x)

ImV (x) = − ImV (−x). (1.37)

That is, that the real part of the potential is symmetric and the imaginary part is

antisymmetric.

In the unbroken PT symmetry phase, energies are real so it is natural to ask

whether the other features of conventional quantum mechanics can be recovered.

Aside from real energies, these important features include unitary time evolution (in

the sense that the norm of a state is preserved in time), orthogonality of eigenstates

of the Hamiltonian, and completeness, in the sense that an arbitrary state can be

expressed as a linear combination of eigenstates of the Hamiltonian. It turns out that

many of these features can be recovered through a redefinition of the inner product

[31, 32, 39], which yields a new type of quantum mechanics. Since time evolution is still

generated by the Hamiltonian, a reasonable choice of inner product would be the PT

inner product, defined by 〈ψ|φ〉PT =
〈
P̂ T̂ψ

∣∣∣φ〉. Because the Hamiltonian commutes

with the P̂ T̂ operator, the norm defined by this inner product is conserved by time

evolution. However, this norm is not necessarily positive-definite. In fact, even after

a normalisation, the PT norm of an eigenstate5 is either 1 or -1. This problem is

solved by the introduction of another operator, Ĉ, to define a CPT inner product as

〈ψ|φ〉CPT =
〈
ĈP̂ T̂ψ

∣∣∣φ〉. The operator Ĉ essentially measures the sign of the PT norm

of an eigenstate, which ensures that the corresponding norm is positive definite since it

contributes a factor of -1 to states with a negative PT norm. It also commutes with

both the Hamiltonian and the P̂ T̂ operator, which ensures unitary time evolution. This

operator can be expressed in terms of the eigenstates of the Hamiltonian, which means it

is in principle possible to calculate. Also, in the Hermitian limit, it reduces to the parity

operator, P̂ . Since P̂ 2 = 1 and the T̂ operator is antilinear, this means that the CPT

inner product reduces to the conventional inner product of Hermitian quantum mechanics.

3There is an apparent re-entrant behaviour in that the PT symmetric phase corresponds to−γ < |δ| < γ,
but this is simply because a negative loss represents a gain and vice versa.

4Both the P̂ and T̂ operator take the momentum, p, to −p.
5In the PT symmetric phase, the eigenstates of the Hamiltonian are also eigenstates of the P̂ T̂ operator.

Since the PT eigenvalue of each of these eigenvectors is a pure phase, they can be normalised so that their
PT eigenvalue is 1 without changing their energy.
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Despite the simplicity of this theory, there remain a number of open problems and in-

teresting features. Conventional quantum mechanics has many other features aside from

those restored by the redefinition of the inner product, such as semiclassical limits, pertur-

bation theory and so on [40]. There are even questions around the redefined inner product

of PT symmetric quantum mechanics. For example, the statement of completeness for

the PT normalised eigenstates has only been verified numerically for a few PT symmetric

potentials [39, 41]. Although the definition of the Ĉ operator is simple, calculating it can

be very involved. For example, even in such a simple system as a PT symmetric square

well (see Chapter 2), a lengthy calculation yields only the first few terms of a perturbative

expansion for Ĉ [42, 43]. Finally, the observables in PT symmetric quantum mechanics

are different to those in conventional quantum mechanics. In conventional quantum me-

chanics, Hermiticity of an observable ensures that the expectation value of that observable

remains real under time evolution. In PT symmetric quantum mechanics the equivalent

condition is

ÂT = ĈP̂ T̂ Â ĈP̂ T̂ , (1.38)

where Â is the observable. Under this condition, position and momentum are no longer

observables [39].

Finally, PT symmetric quantum mechanics is related to the wider field of pseudo-

Hermitian quantum mechanics. An operator, Ĥ, is pseudo-Hermitian if there exists a

linear Hermitian operator, η̂, such that

Ĥ† = η̂Ĥη̂−1. (1.39)

Pseudo-Hermitian quantum mechanics encompasses both conventional and PT symmetric

quantum mechanics [33, 40]. In pseudo-Hermitian quantum mechanics, conditions for the

reality of eigenvalues can be found that are weaker than those for PT symmetry.

1.4.2 Exceptional Points in Non-Hermitian Systems

It is known that the eigenvalues of a parameter-dependent Hermitian Hamiltonian can ex-

hibit degeneracies - at certain parameter values, eigenvalues become equal. For Hermitian

Hamiltonians, the corresponding eigenstates remain distinct despite the degeneracy in

eigenvalues. Such a degeneracy is often called a diabolical point (DP) because of its shape

in energy-parameter space. However, non-Hermitian Hamiltonians exhibit different type

of degeneracy where the eigenstates as well as the eigenvalues become degenerate. Such a

non-Hermitian degeneracy is often called an exceptional point (EP) [38, 44]. EPs have a

number of interesting properties not associated with diabolical points, most of which are a

consequence of the characteristic complex square root behaviour of eigenvalues near an EP.

Non-Hermiticity is most often found in open systems that exhibit loss and gain [37, 45].

Examples include optical and microwave resonators [46, 47], electrical circuits [48], and

polariton condensates [7, 22]. In such systems, the unique properties of EPs have physical

consequences [38]. Exceptional points occur at the PT-symmetry breaking transition

in PT symmetric systems [49], and are also associated with quantum phase transitions [50].
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Topological structure of an exceptional point. The Riemann sheets associated
with the real (a), and imaginary (b) parts of the eigenvalues of the eigenstates that co-
alesce at the EP. The blue curves illustrate the trajectory of the system when the EP is
encircled, clearly showing why a single encircling of the EP switches the states. However,
the geometric phase cannot be inferred from these graphs. The characteristic change from
crossing to anticrossing of the real and imaginary parts of the eigenvalues near an EP is
illustrated in (c)-(f). In each graph we slice along the ∆ω axis. In (c) and (d), the real
and imaginary parts of the eigenvalues are shown for a slice taken at a value of ∆γ smaller
than the value for the EP. In (e) and (d), the same are show for a slice at a value of ∆γ
larger than the value for the EP. Two things are clear: crossing of the real parts is asso-
ciated with anticrossing of the imaginary parts, and the crossing-anticrossing behaviour
is reversed for slices on either side of the EP. This change from crossing to anticrossing is
an important experimental signature of an EP. Equation (1.41) shows that EPs come in
pairs. We show only one here for clarity - the structure is symmetric in the ∆ω axis and
we have omitted the negative region.
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We will consider EPs in which two eigenstates coalesce. EPs of arbitrarily high order

are also possible, but the topological structure becomes more complex [38]. When only

two eigenvectors coalesce, the full problem can be reduced, and the EP can be described

by the simple two-level Hamiltonian [38, 51]

Ĥ(λ) =

(
ω1 0

0 ω2

)
+ λ

(
ε1 δ1

δ2 ε2

)
, (1.40)

where the non-interacting energies are Ek = wk + λεk, the couplings are given by δk, and

λ is a complex parameter. The eigenvalues coalesce at two values of λ given by

λ1,2 =
−i(ω1 − ω2)

i(ε1 − ε2)± 2
√
δ1δ2

. (1.41)

Near the EP the eigenvalues depend on λ as

E1,2(λ) =
1

2

(
ω1 + ω2 + λ(ε1 + ε2)±

√
(ε1 − ε2) + 4δ1δ2

√
(λ− λ1)(λ− λ2)

)
. (1.42)

At each EP, there is only one eigenvector,

|φ1,2〉 =

(
± iδ1√

δ1δ2

1

)
. (1.43)

Equation (1.42) shows that the EP is a stable phenomenon - changing the entries

of the matrices in Equation (1.40) shifts the EP but does not remove it. Although

Equation (1.40) generically describes all EPs where two states coalesce [52], it is not

always clear how to derive a two-level model, for example, for the EP associated with

PT-symmetry breaking in the PT symmetric square well (see Chapter 2).

If the underlying Hamiltonians are Hermitian, then ωi and εi are real, and δ2 = δ∗1 ,

so according to Equation (1.42), an EP is achieved for complex values of λ (so long as

δ1 6= 0). Generally, to reach and encircle an EP, two parameters, for example Reλ and

Imλ, must be varied. Also, since λ must be complex, the overall system is non-Hermitian

even if the underlying matrices are Hermitian. The situation is a little simpler for PT-

symmetric systems. For PT symmetry, the parity operation is swapping the underlying

states in Equation (1.40), and time reversal corresponds to replacing i with −i. So PT

symmetry is achieved when ω2 = ω∗1, ε2 = ε∗1, and δ2 = δ1, which must also be real. Under

these conditions, an EP is attained for real values of λ. This is easily illustrated with the

simple Hamiltonian

H =

(
ω + iγ δ

δ ω − iγ

)
, (1.44)

which models a pair of interacting states that experience balanced loss and gain. The

eigenvalues are given by

E1,2 = ω ±
√
δ2 − γ2. (1.45)

An EP occurs when |δ| = |γ|, which can be reached by varying only one parameter,

either the coupling, δ or the loss, γ. In practice, γ is often kept constant and δ is varied

[53, 54]. Here, the EP corresponds exactly to the PT-symmetry breaking transition.

When |δ| < |γ|, the energies are real, and when |δ| > |γ|, they are complex conjugates.
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The energies approach each other along the real axis and then diverge as a complex

conjugate pair, as shown in Figure 1.8. This behaviour has been harnessed for mode

selection and switching applications. Before the EP, neither mode experiences loss, but

after the EP, one experiences gain and the other loss, and the lossy mode is suppressed

[54–56].

(a) (b)

Figure 1.8: Behaviour of the eigenvalues near an EP associated with PT symmetry, as
described by Equations (1.44), (1.45). As shown in (a), when the coupling δ is varied, the
eigenvalues approach each other along the real axis, and split in to a complex conjugate
pair at the EP, which is typical for the PT symmetry breaking transition. The effect of
a small detuning between the eigenstates is illustrated in (b). The eigenvalues no longer
cross. This characteristic avoided crossing behaviour can be used for switching or mode
selection in experiments since one eigenstate experiences gain and the other loss.

There are a few interesting features of EPs that have physical consequences. Equa-

tion (1.42) shows that near an EP, the eigenvalues have a square root dependence on the

parameter λ. For small values of λ, the derivative, dE/dλ is therefore large, and this sen-

sitivity can be exploited for switching [55, 57, 58], or to enhance the sensitivity of sensors

[59–62]. Away from the EP, there are two linearly independent eigenvectors, and when the

EP is encircled in parameter space (for example, by varying the real and imaginary parts

of λ), the eigenvectors are interchanged with a sign change that is a result of a topological

phase. This behaviour is a result of the complex square root structure near the EP, as illus-

trated in Figure 1.7. If the EP is encircled a second time, the eigenstates are interchanged

again, but the sign change remains. Only after four encirclings are the eigenvectors re-

stored. For clockwise encircling, the pattern is |ψ1〉 → − |ψ2〉 → − |ψ1〉 → |ψ2〉 → |ψ1〉
[51, 63, 64]. This implies a chirality in that counterclockwise encircling produces a dif-

ferent pattern. The eigenstate at the EP, given is Equation (1.43) is also chiral [63, 65].

When δ1 = δ2, the eigenstate at one of the two EPs is given by

|φ〉 =

(
±i
1

)
, (1.46)

regardless of the choice of basis. In the context of quantum mechanics and optics, the

basis states oscillate in time, so Equation (1.46) represents a superposition of basis
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states with a phase difference of π/2. The oscillation of the first state trails or leads

(depending on the sign) that of the second state by a quarter period. This phase lag leads

to circular rotation with a well-defined direction - either clockwise or counterclockwise,

that is, chirality [65]. An analogy in optics is the formation of circular polarisation by

superposition of linearly polarised light.

The chirality of EPs is often manifested in experiments, for example in optical whis-

pering gallery mode resonators where the eigenstate at the exceptional point is a travelling

wave in either the clockwise or counterclockwise direction [66–68], in coupled resonators

where intensity is localised in a single resonator [54, 69], and in optics unidirectional

propagation has been demonstrated [53, 70, 71]. The interchange of modes when an

exceptional point is encircled has been observed in many systems, including microwave

resonators [46, 72] and polariton condensates [7, 22]. This topological behaviour has also

been harnessed in an experiment with microwave waveguides, where carefully chosen

modifications to the waveguide boundary steer the waveguide mode around an EP as

it propagates. A combination of adiabatic transport on the Riemann sheets and a

nonadiabatic jump from one sheet to the other [73] means that the system ends up in

the same state after encircling regardless of the initial state, which allows for asymmetric

switching between waveguide modes [74]. Dynamic encircling of an EP has also been

studied in optomechanical systems [75] and atomic spectra [76].

Finally, the nontrivial square root structure near the EP can cause apparently

counterintuitive effects such as the pump-induced suppression and then revival of

lasing in coupled microresonators [77, 78]. This structure also leads to a characteristic

crossing-anticrossing behaviour of the real and imaginary parts of the eigenvalues. For

example, if one takes a slice along the Reλ axis near the EP in Figure 1.7, the real

parts of the eigenvalues will cross, and the imaginary parts exhibit anticrossing. If a slice

is taken on the other side of the EP, the behaviour is reversed - the real parts exhibit

anticrossing, and the imaginary parts cross. It has been shown that crossing of the real

parts is associated with anticrossing of the imaginary parts [51, 52, 79]. The change from

crossing to anticrossing is an important experimental signature of an EP [7, 46] since

the nonzero linewidth of states means it is generally not possible to resolve the EP in an

experiment.

1.4.3 Physical Realisations of Non-Hermitian Systems and Exceptional
Points

These results on non-Hermitian degeneracies and PT symmetric systems have inspired a

wide range of experiments [36, 37]. Most experiments introduce non-Hermiticity through

loss and gain, or by engineering a coupling between two states. By tuning the system

to an exceptional point, many remarkable behaviours can be demonstrated. Since there

are no known examples of a closed non-Hermitian quantum system, experiments inspired

by PT symmetric quantum mechanics focus on classical wave systems where an analogy

can be made with the Schrodinger equation. Despite the deeper theoretical results in PT

symmetric quantum mechanics, most experiments focus on observing the PT symmetry

breaking and phenomena related to the associated EP.
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EPs have been predicted or observed in a range of systems. Some examples include

electrical circuits [48], microwave resonators [72], optical resonators [53, 61], exciton-

polaritons [7, 22], the optical spectra of atoms [76, 80], and also quantum phase transitions

[50]. Optical systems have been a fruitful ground for phenomena associated with EPs

since loss is unavoidable, and gain can be achieved with doping and optical pumping.

Also, the field of optical microresonators is well-developed [81], and modes of these

resonators can be coupled with only small perturbations to achieve an EP [82]. Some of

the interesting phenomena associated with EPs in optical systems include loss-induced

transparency [83], reversing the pump dependence of lasers [78], and enhanced sensing

[53, 60, 61]. In polariton condensates, the non-Hermiticity of optical potentials, explained

in Section 1.2 has been used to induce EPs. Changing the strength of the optical pump

changes primarily the real part of mode energies whereas changing the area of the optical

pump changes the imaginary part of a mode energy by modifying the gain of that mode,

which is mostly determined by overlap with the optical potential.

The analogy between the Helmholtz equation and the Schrodinger equation allows

for the creation of optical systems that are analogues of PT symmetric quantum systems

[36]. The complex permittivity takes the place of the potential, and PT symmetry may

be achieved with gain provided by optical pumping [78], or passively with a suitably

designed asymmetric loss profile. In the latter case PT symmetry is not achieved,

but a transformation allows one to recast the system in terms of a PT symmetric one

[36, 83]. Most work focuses only on the EP that accompanies the PT symmetry breaking

transition, and this has allowed for the demonstration of a number of interesting effects

including loss-induced transparency [83], refraction asymmetry [84], and thresholdless

single mode lasing [54, 56]. There are, however, significant limitations to the analogy -

because the refractive index depends on frequency, PT symmetry can be attained only

for a discrete set of frequencies rather than a frequency range, which makes observation

of the PT symmetry breaking transition subtle and involved. It has also been argued

that many of the effects observed in PT symmetric optical systems are not uniquely a

result of PT symmetry [36].

One of the simplest means of achieving PT symmetry is through the introduction

of gain and loss. At a microscopic level, gain and loss are manifested in open quantum

systems by stochastic evolution [85]. However, the same gain and loss are represented

by an imaginary potential in the semiclassical limit. In addition, the order parameter

of such systems often obeys a Schrodinger-type equation, allowing for an analogue of

a PT symmetric quantum system to be studied. The analogy is stronger than for

optical systems both because these systems are inherently quantum, and because PT

symmetry can truly be achieved. For example, the order parameter of both atomic BECs

and BECs of exciton-polaritons is described by a Gross-Pitaevskii equation, which is a

nonlinear Schrodinger equation. Since these systems are also nonlinear due to two-body

interactions, results from PT symmetric quantum theory do not apply exactly, but this

also means that they are a natural testing ground to explore the interplay of nonlinearity

and PT symmetry [86]. Gain and loss are naturally present in polariton condensates

because of leakage of photons from the cavity and stimulated scattering from the reservoir

to the condensate as explained in Section 1.2. In contrast, gain and loss must be carefully

induced in atomic condensates [37]. For example, loss can be engineered with electron
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beams from scanning electron microscopes that knock atoms out of the condensate [87],

and gain can be introduced via a condensate replenishing mechanism similar to that used

in an atomic laser [88]. So far, such induced non-Hermiticity has been used in atomic

BECs to achieve coherent perfect absorption [89], negative differential conductivity [87],

bistability [90] and other effects [91]. In addition, PT symmetric atomic BECs have

been explored theoretically. There are proposals for PT symmetric coupled double wells

[92–95] and also multiwell potentials [96]. It has been shown that the nonlinearity does

not remove the essential behaviour associated with PT symmetry breaking. However, the

eigenvalue structure and time dynamics are both enriched by the nonlinearity.

Gain and loss are much easier to manipulate in polariton condensates, but apart from

simple mode selection arguments [15, 21], non-Hermitian effects were largely overlooked

until the relatively recent observation of exceptional points achieved by engineering

optically-induced potentials [7, 22]. Exceptional points can be reached because the

real and imaginary parts of the energies of modes of optically-induced traps can be

independently tuned by adjusting the trap depth and width [15]. This has allowed both

for the observation of the topological phase acquired upon circling the EP, and also

of chiral modes in the vicinity of the EP [7, 22]. However, the EPs studied were not

associated with the PT symmetry breaking transition. On the theoretical side, a PT

symmetric Josephson junction formed by coupled polariton condensates in micropillars

has been investigated [97]. PT symmetry is achieved by optical pumping of one pillar

whereas the other pillar experiences loss because of the radiative decay of polaritons.

Although the work focuses on condensates below threshold, a range of interesting be-

haviour associated with the combination of nonlinearity and PT symmetry was revealed,

including spontaneous breaking of PT symmetry and hysteresis. More generally, losses

are present in the photonic part of the polariton wavefunction due to leakage from the

cavity, and gain is present in the excitonic part due to stimulated scattering from the

reservoir. If these are balanced, theoretical predictions indicate that the associated PT

symmetry can give rise to effects such as permanent Rabi oscillations [98].

1.4.4 PT Symmetry and Nonlinearity

The study of nonlinear PT symmetric systems is an active and developing field [58, 86],

which has arisen not just because of the inherent theoretical interest, but also because

optical systems are nonlinear for sufficiently large field strength. This field is diverse and

complicated because of the range of phenomena already present in both dissipative and

conservative nonlinear systems [99], and also the extra degree of freedom that nonlinearity

adds to PT symmetry. One can choose to study systems with a conventional nonlinearity

and a PT symmetric linear potential, or systems with a PT symmetric nonlinearity.

One of the most interesting features of nonlinear systems is the existence of solitons -

wavepackets that maintain their shape while propagating at a constant velocity. Solitons

retain their shape because dispersion is counteracted by nonlinearity. As such, one branch

of nonlinear PT symmetric theory focuses on solitons. It has been shown that in systems

with a conventional nonlinearity and a PT symmetric linear potential, PT symmetric

solitons exist, and there is an attendant PT symmetry breaking transition [100]. These
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solitons can even exist for parameter values that would cause the linear system to be

in the broken symmetry phase. That is, the nonlinearity modifies the PT symmetry

breaking transition. PT symmetric solitons in lattice systems with both a PT symmetric

nonlinearity and a PT symmetric linear potential have also been studied [101, 102]. The

symmetry breaking transition for these solitons is retained even if the PT symmetric linear

potential is removed. In contrast to dissipative systems that lack PT symmetry, solitons

exist as parameter-dependent families of solutions rather than as fixed points in parameter

space and are very stable [86]. These predictions have been confirmed in experiments

with a PT symmetric mesh lattice that was implemented using two coupled fibre loops

[103]. It has also been shown that solitons in nonlinear PT symmetric systems have inte-

grals of motion, which can generically be hard to find in dissipative nonlinear systems [86].

More generally, studies of nonlinear coupled PT symmetric dimers have revealed that

the nonlinearity significantly modifies the PT symmetry breaking transition [104, 105].

In fact the behaviour seen in linear systems can be reversed. With increasing non-

Hermiticity, the system can transition first from the linear broken symmetry phase to

the nonlinear broken symmetry phase, and then to the nonlinear unbroken symmetry

phase. This behaviour is essentially a result of a saturable nonlinearity, and depends on

whether lasing starts in a PT symmetric mode or a broken symmetry mode. In fact, if

lasing initially occurs in the unbroken mode, the system remains in the unbroken phase

regardless of the nonlinearity.

Closely related is the theoretical study of coupled atomic BECs in PT symmetric

double well potentials, which are a nonlinear version of the simple two level model in

Equation (1.28). This started with the study of the linear eigenstates for a collection

of PT symmetric delta function potential [106], which demonstrated the existence of

PT symmetric bound states for sufficiently small values of non-Hermiticity, with a

symmetry breaking transition as the non-Hermiticity is increased. Numerical studies of

(nonlinear) BECs in PT symmetric double wells confirmed the existence of PT symmetric

bound states [93, 94]. The nonlinearity also enriches the behaviour - in the presence

of nonlinearity, additional eigenstates appear. These are called “self-trapping” states

because they are strongly confined to a single well. These extra states complicate the

PT symmetry breaking behaviour resulting in both a second order EP where two PT

symmetric solutions coalesce, and a third order EP where two broken symmetry solutions

coalesce with an unbroken symmetry solution. For certain parameter values, these two

EPs can coincide, resulting in a fourth order EP. Also, the non-Hermiticity alters the

threshold for the appearance of self-trapping states, since both the broken PT symmetry

states and the self-trapping states are localised in a particular well. The dynamics of

this system were also studied, in particular the stability of solutions [95]. It was found

that the PT symmetric stationary solutions become unstable near, but not exactly at the

PT symmetry breaking transition point. This discrepancy essentially arises because the

nonlinearity depends on the norm of the wavefunction, which is no longer conserved due

to the non-Hermiticity. These results are supported by a simple theoretical toy model

[92]. In addition, coupled PT symmetric wells have been studied using a Bose-Hubbard

model, which in contrast to mean field theory describes the dynamics when only a few

particles are present. It was shown that while linear model with N particles has a pair

of EPs, both of orderN+1, nonlinearity breaks this in to a cascade of lower order EPs [107].
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The crossing scenario for a particular nonlinear non-Hermitian two-level system was

also analysed to generalise some of these results [108]. In the same way that the two

level Hamiltonian (1.40) generically describes EPs of order two, this model generically

describes the coalescence of two levels in a non-Hermitian system with a particular

nonlinearity. The nonlinear eigenstates are defined as stationary states of a discrete

nonlinear Schrodinger equation. This analysis revealed a hybrid structure that has

features of both the linear non-Hermitian crossing scenario (that is, an EP as described

in Section 1.4.2) and the nonlinear Hermitian scenario. Sufficiently strong nonlinearity

causes loops in the nonlinear eigenvalue structure, and this manifests also in loops in

the nonlinear non-Hermitian eigenvalue structure. Overall, this results in a complicated

structure with many bifurcations that can be achieved by tuning various parameters.

The dynamics were also investigated, and two competing processes were identified: the

effect of nonlinearity, and also decay, which reduces the norm of the state and hence the

effective nonlinearity.

Experimental investigations of nonlinear PT symmetric systems remain in their

infancy. Aside from the observation of PT symmetric solitons in a mesh lattice [103],

coupled PT symmetric microdisk lasers have also been studied [53, 54]. Although these

systems are analogous to BECs in coupled PT symmetric wells, nonlinear effects have

not been extensively considered. PT symmetry breaking simply selects the lasing mode.

However, a significant enhancement of nonlinearity was reported, which was attributed

to the population asymmetry associated with eigenstates in the broken symmetry phase.



Chapter 2

PT Symmetric Square Well for

Polariton Condensates

In this chapter we discuss a PT symmetric square well for polariton condensates. The

PT symmetric square well is very simple and has been investigated analytically [109–

111]. It is therefore an attractive system for achieving PT symmetry breaking in polariton

condensates, and could provide a more straightforward demonstration of an exceptional

point than previous experiments with polariton condensates [7]. We explain how a nearly

PT symmetric square well can be created for polaritons by combining a real potential

created with an etch-and-overgrowth technique with an imaginary potential that is in-

duced optically. Perfect PT symmetry cannot be achieved because the loss is fixed, and

an optically-induced real potential is unavoidable. We explain that the imperfect PT

symmetry removes the EP associated with the PT symmetry breaking transition, but

that it can easily be restored. We also discuss a few possible challenges for experimental

implementation.

2.1 PT Symmetric Square Well

The first PT symmetric Hamiltonians to be studied were inspired by field theory and were

approached numerically and perturbatively [35]. In contrast, the PT symmetric square well

is simple and amenable to analytic treatment, which clarifies the PT symmetry breaking

transition. For an infinite square well of width L, the real part of the potential is reflected

in the boundary conditions, ψ(x = ±L) = 0, and the imaginary part is given by

W (x) =

{
−iZ, x < 0

iZ, x > 0
(2.1)

where Z is the strength of the non-Hermiticity. This potential is shown in Figure 2.1 (a).

Since the real part is symmetric and the imaginary part is antisymmetric, this potential

is PT symmetric according to the condition given in Section 1.4.1.

The eigenstates of this potential have been studied extensively by Znojil, who derived

transcendental equations for the eigenvalues which he then solved graphically [110]. Some

details of the graphical solution are shown in Figure 2.2. This analysis revealed that

below a critical value of non-Hermiticity, Zc ≈ 4.48, all the eigenvalues are real. As

Z is increased beyond ZC , the real parts of the lowest two eigenvalues merge, and the

27
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(a) (b)

Figure 2.1: Imaginary part of the potential for (a): PT symmetric square well, Equa-
tion (2.1), (b): PT symmetric square well with a stepped potential, Equation (2.2).

eigenvalues continue in to the complex plane as complex conjugates [109]. With increasing

Z, this behaviour repeats for successively larger pairs of eigenvalues, E2n and E2n+1

whose real parts merge, generating an increasing sequence of thresholds, Z0
C < Z1

C < · · · .
This behaviour mirrors that of other PT symmetric Hamiltonians, where eigenvalues

remain real until a certain parameter reaches a threshold [35].

In Figure 2.3 we show numerically computed eigenvalues and eigenstates of the PT

symmetric square well to shed light on the PT symmetry breaking transition. Below

the transition, the states that eventually merge are symmetric with respect to reflection

about the centre of the well and hence each experience balanced loss and gain, resulting

in purely real eigenvalues. Above the transition, the states lose reflection symmetry, and

are mirror images of one another, which means their real parts remain equal, but their

imaginary parts have the opposite sign. One becomes localised in the gain region, and

the other in the loss region.

Much richer behaviour was later uncovered for a more complicated stepped imaginary

potential of the form

W (x) =


−ig −L < x < −l

0 −l < x < l

ig l < x < L

, (2.2)

in which the strength of the non-Hermiticity is controlled by two parameters, g and l.

This potential is shown in Figure 2.1 (b). The non-Hermiticity parameter, Z, is defined by

g = 2Z/(L − l)2 [111]. The introduction of a second parameter considerably complicates

the graphical analysis, and the method of moving lattice must be employed [112]. This

method allows for eigenvalues to be split in to two different classes based on the type of

graphical intersection they correspond to. Eigenvalues of one class remain real at any

value of Z, and are classified as stable. Eigenvalues of the other class are real below a

certain value of Z, after which they merge in pairs and then become complex conjugates

just like the eigenvalues of the simpler PT symmetric square well in Equation (2.1). The

distinction between stable and unstable energies can be tuned in an intuitive way. For

l ≈ L, when the potential is nearly Hermitian, all of the energies are stable, whereas for

l � L, which corresponds to the simpler PT symmetric square well, all of the energies
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Figure 2.2: Details of graphical solution for the energies of a particle confined to a PT sym-
metric square well. After a reparamaterisation, energies are determined by intersections of
the curves X(T ) and Y (Z, T ), in the S-T plane. The energy is directly determined by the
values of S and T , and the curve Y (Z, T ) depends on the strength of the non-Hermiticity,
Z. It is plotted for several values of Z. For small values of Z, the curve Y (Z, T ) is low, and
there are infinite number of pairs of intersections. However, as Z increases to the critical
value ZC ≈ 4.48, the first pair of energies merges. As Z increases further, successively
higher pairs of energies merge. Note that the associated solution does not disappear after
the merging of levels. In fact, the energies continue in to the complex plane as conjugates
[109]. This is not evident from graphical solution, which is constructed assuming real
energies. Reproduced from [110].

are unstable. For intermediate values of l, the stable and unstable energies are interspersed.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.3: Eigenvalues and eigenstates of the PT symmetric square well. The dependence
of the eigenvalues on the non-Hermiticity, Z is shown in (a) and (b). With increasing non-
Hermiticity, the real parts of successively larger pairs of eigenvalues merge. Before the
real parts merge, the imaginary parts, (b), are both zero. After the real parts merge, the
eigenvalues become complex conjugates. Studying the corresponding eigenstates, whose
position densities are shown in (d)-(f) for the first pair, and (g)-(k) for the second pair,
sheds light on the PT symmetry breaking transition. For low values of Z, shown in (c)
and (f), eigenstates are similar to eigenstates of a Hermitian square well. Since they
have reflection symmetry about the middle of the well, their overlap with the gain region
(shaded in blue) is the same as the overlap with the loss region, so the imaginary part
of the eigenvalue is zero. However, slightly above the PT symmetry breaking transition
((d) and (g)), the states lose reflection symmetry, and one becomes more localised in the
gain region, with the other more localised in the loss region. The localisation is even more
pronounced for larger values of Z, shown in (e) and (h). After the transition, the second
state is the reflection of the first one about the centre of the well. Since the real part of
the potential is symmetric and the imaginary part is antisymmetric, this means the real
parts of the energies are equal, and the imaginary parts have the opposite sign. Note
that the parity operation is reflection about the centre of the well (x = 0). Below the
transition, states are symmetric with respect to the parity operation since they are not
changed after reflecting about the origin. Above the transition, they lose parity symmetry
due to localisation in the gain or loss region.
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2.2 PT Symmetric Square Well for Polaritons

Implementing a PT symmetric square well for polaritons condensates is attractive for a

number of reasons. The observation of PT symmetry breaking in polariton condensates is

particularly interesting because polariton condensates are an inherently quantum system,

whereas observations of PT symmetry breaking in optics rely on similarity between the

classical wave equation and the Schrodinger equation. Exceptional points have previously

been observed in polariton condensates [7, 22], but they were not associated with the

PT symmetry breaking transition. As we have explained in Section 2.1, the behaviour of

a stepped PT symmetric square well is much more subtle. Polariton condensates could

serve as a useful system to test these predictions of PT symmetric quantum mechanics.

Finally, polariton condensates benefit from a strong nonlinearity, which allows for the

exploration of the interplay between nonlinearity and PT symmetry.

A nearly PT symmetric square well can be created for polaritons by combining a

real trapping potential induced by local cavity lengthening (achieved with an etch-and-

overgrowth method as discussed in Section 1.3) with an imaginary potential shaped by

both the intrinsic loss of polaritons and the gain provided by a laser pump. Potentials

induced with local cavity lengthening are typically on the order of 5 meV to 10 meV [27],

deep enough to confine several states [26]. Although these potentials are two dimensional,

quasi-one-dimensionality could be achieved by only elongating a narrow strip. Alterna-

tively, one-dimensional condensates have been observed in microwire cavities formed by

chemical etching [113, 114], and in ZnO microwires [115]. The intrinsic loss of polaritons

manifests as a constant negative imaginary potential whereas a laser pump induces gain

through the excitation of reservoir polaritons that feed the condensate by stimulated scat-

tering as explained in Section 1.2. Hence a pump with a step profile will induce a stepped

imaginary potential in the well. If the pump edge is aligned with the centre of the well,

and the gain induced by the pump is exactly twice the intrinsic polariton loss, the well will

be PT symmetric as shown in Figure 2.4. However, the pump also induces a real potential

due to repulsive interactions with reservoir polaritons, which perturbs the PT symmetry.

This potential is generally small compared to the gain, and its size is set by the density of

the incoherent reservoir created by the pump as well as by the polariton-reservoir inter-

action strength. After eliminating the reservoir as in Equation (1.20), the total potential

for polaritons given a stepped pump has real and imaginary parts

Re V (x) =


V0 x < −L
0 −L < x < 0

gR
γR
P 0 < x < L

V0 + gR
γR
P x > L

and

Im V (x) =

{
− i~

2 γC x < 0
i~
2

(
RP
γR
− γC

)
x > 0

(2.3)

where V0 is the depth of the square well, gR is the condensate-reservoir interaction strength,

γR is the reservoir loss rate, γC is the condensate loss rate, P is the pump rate, R is the
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stimulated scattering rate from the reservoir to the condensate, and 2L is the width of the

well. This potential is shown in Figure 2.4.

(a)

(b) (c)

Figure 2.4: Nearly PT-symmetric potential for polaritons for: (a) balanced loss and gain,
P = 2γCγR/R, (b) higher power, P = 4γCγR/R. The real potential is the sum of an
external finite square well potential and pump-induced potential. The imaginary potential
is the sum of the pump-induced gain and the natural polariton loss. The imaginary part
of the pump-induced potential has been offset slightly for clarity.

This potential is not exactly PT symmetric. PT symmetry requires the real part of

the potential to be symmetric and the imaginary part to be antisymmetric. Because

the loss is fixed and the gain varies, the imaginary part is generally not antisymmetric.

Antisymmetry is attained only when P = 2γCγR/R, that is when the gain induced

by the pump is exactly twice the polariton loss rate. The real part of the potential is

not symmetric because the pump induces a real potential as well as gain. Moreover,

antisymmetry of the imaginary part of the potential is achieved only for a particular

pump strength whereas the PT symmetry breaking transition occurs for a particular

strength of antisymmetric imaginary part. When the imaginary part of the potential is

antisymmetric, its strength may be far from that required for the transition. Condensation

also occurs at a particular pump strength and is associated with a significant drop in the

linewidth [5, 116]. If the PT symmetry breaking threshold is close to the condensation

threshold, characteristics of condensation may obscure the symmetry breaking transition,

which is inferred partly from the linewidths of the associated states. Finally, the well

depth is finite whereas only an infinite PT symmetric square well has been studied before.

Simple estimates can clarify some of these problems. After appropriate rescaling the

imaginary part of the potential relates to the parameter Z of the PT symmetric infinite
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square well, Equation (2.1), as

Z =
2 Im(V )L2m

~2
, (2.4)

where m is the polariton effective mass. For a typical polariton effective mass,

m = 10−4me− , a well size L = 10 µm, and P = 2γCγR/R, chosen to make the imaginary

part antisymmetric, we have Z = 6.72, which is very close to the critical value Z0
C ≈ 4.48,

where the lowest two energies merge and become complex conjugates. This shows that

when asymmetry of the imaginary part of the potential is achieved, the strength of the

imaginary part is approximately correct to induce the PT symmetry breaking transition.

Also, these pump strengths are well above the homogeneous condensation threshold,

Pth = γRγC/R, which in turn is higher than the condensation threshold in the trap. This

means that the condensation threshold should not interfere with observation of the PT

symmetry breaking transition.

The size of the asymmetry in the real part of the potential is PgR/γR, which is equal

to gRR/γR for the value of P that makes the imaginary part antisymmetric. For typical

parameters1, this asymmetry is on the order of 10−1meV, much smaller than typical trap

depths which are on the order of several to 10 meV [26, 27]. This shows that the real part

of the potential will remain approximately symmetric for pump powers that induce the PT

symmetry breaking transition. Finally, the ratio of the real part of the pump-dependent

potential to the imaginary part is

ReVP
ImVP

=
~
2

R

gR
, (2.5)

which is approximately 1 for the typical values quoted before. This means that the

real part of the pump dependent potential increases at the same rate as the imaginary

part. Therefore we are assured that the asymmetry in the real potential will remain

small even when the power is increased enough to cause merging of the energy levels.

Although the potential is not exactly PT symmetric, it will remain nearly PT symmetric

for experimental parameters that should induce the PT symmetry breaking transition.

2.3 Numerical Results

The first step towards implementing a PT symmetric square well for polaritons is

determining whether the asymmetries we identified are large enough to remove the

PT symmetry breaking transition. To support the approximate arguments, we can

systematically investigate the effects of these asymmetries. In particular, we investigate

the linear single-particle states of the system, which correspond to stationary solutions

of the ODGPE, Equation (1.16), when nonlinearity is neglected, by numerically solving

the Schrodinger equation in position space with the potential in Equation (2.3). We

discretise the Hamiltonian on a Chebyshev grid [117], a task made simple with the use

1gR ≈ 10−3meV µm2, and γC ≈ 10−1ps−1. The term R is inherently phenomenological so its value
cannot be measured. However values on the order of ~R ≈ 10−4meV µm2 are typically used to successfully
model experiments [7].
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of Chebyshev differentiation matrices, and then solve for the complex eigenvalues and

eigenvectors of the corresponding matrix using standard methods2. Since the potential is

piecewise linear, it would also be possible to derive and numerically solve transcendental

equations to find the eigenvalues. For simplicity, we focus on the coalescence of the

lowest two eigenstates, but as we have explained in Section 2.1, in the PT symmetric

square well, pairs of eigenstates with successively higher energies coalesce with increasing

non-Hermiticity. Our results are hence readily adapted to the EP associated with

coalescence of eigenstates with higher energy. We focus on a square well that is 10 µm

wide, with a potential depth of 5 meV, consistent with potentials that can be created with

an etch-and-overgrowth technique [26]. We use typical values of polariton parameters3,

which determine the size of the fixed loss, and the potential induced by the pump.

2.3.1 Effect of Asymmetries

Figures 2.5 and 2.6 show the pump power dependence of the first two eigenvalues for

the finite square well. Because energies of the first two eigenstates are well below the

potential barrier, the results for an infinite square well are identical. For comparison with

previous analytical results, we convert the pump power to the dimensionless parameter,

Z, as explained in Section 2.2. In Figures 2.5 (a) and (b), we show the results for a

PT symmetric square well. As predicted by previous analytical results [109, 110], the

eigenvalues are real below the critical value, ZC ≈ 4.48, after which the real parts merge

and the imaginary parts become complex conjugates.

In Figure 2.5 (f) and (h) we model the fixed polariton loss and varying pump-dependent

gain. Even though the value of polariton loss means that PT symmetry (where the gain

induced by the pump is exactly twice the polariton loss) does not occur at the critical value

of Z, the essential features of the PT-symmetry breaking transition and EP are retained.

Below a critical value of Z, the imaginary parts of the eigenvalues are equal and increase

linearly with Z. At a critical value of Z, the real parts merge and the imaginary parts

diverge. Although the eigenvalues are no longer complex conjugates, the imaginary parts

diverge from the previous linear increase at the same rate. This behaviour is identical

to that predicted in quasi PT-symmetric passive optical systems, where only varying loss

is present [36, 118]. In these systems, PT symmetric behaviour is reproduced after a

formal relabelling of the fields, which amounts to factoring out the fixed loss. In fact, the

stepped imaginary potential considered in (f) and (h) can trivially be decomposed in to

an antisymmetric part plus a fixed part, both of which grow with the pump power. The

stepped imaginary potential is given by

W (x) =

{
−iV1 −L < x < 0

iV2 0 < x < L
, (2.6)

2For a square well 10µm wide, we discretise a 20 µm region with approximately 1000 grid points. Since
the bound states decay outside the well, we impose the Dirichlet boundary condition that the wavefunction
vanishes at the edge of the discretisation region. This is easily accomplished by retaining only the interior
points of the Chebyshev grid. It is well-known that such spectral methods converge rapidly with the number
of grid points provided the solution is smooth [117], and convergence is easily verified by increasing the
number of grid points until the computed eigenvalues converge.

3m = 4× 10−4me− gR = 7× 10−4meV µm2, γC = 5× 10−2ps−1, ~R ≈ 6.5× 10−3meV µm2
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which can be rewritten in the form

W (x) =

{
−iV3 + iV4 −L < x < 0

iV3 + iV4 0 < x < L
, (2.7)

where V3 is the magnitude of the antisymmetric part, and V4 is the fixed part, by

choosing V3 = (V1 +V2)/2 and V4 = (V2−V1)/2. In Equation (2.6), V1 = γ̃ represents the

dimensionless polariton loss rate, and V2 = P̃ − γ̃ represents the net gain due to pumping,

so V3 = P/2 + γ̃, which explains why the critical value of Z is increased compared to the

PT symmetric square well. Also, V4 = P̃ /2− γ̃, which explains why the imaginary parts

of the eigenvalues increase with pump power.

In Figures 2.6 (a) and (b) we return to an antisymmetric imaginary potential, but

model the effect of the pump-dependent real potential by adding a small real potential

that is proportional to pump rate. The constant of proportionality is determined by the

polariton parameters as explained in Section 2.2. The imaginary parts of the eigenvalues

still remain equal up to a threshold after which they become complex conjugates.

However, the real parts no longer coalesce, and the divergence of the imaginary parts of

the eigenvalues is smoothed compared to the PT symmetric square well. The eigenstate

which acquires a positive imaginary part in the transition in Figure 2.6 (b) is localised

in the gain region, and its energy is therefore increased, precluding degeneracy in the

real parts in (a). In Figure 2.6 (f) and (g) we model all the asymmetries: fixed loss with

varying gain, and the real part of the pump-induced potential. Compared to (a) and (b),

the divergence of the imaginary parts and coalescence of the real parts is further smoothed.
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(a)
(b)

(c) (d) (e)

(f)
(g)

(h) (i) (j)

Figure 2.5: Lowest two eigenvalues and corresponding eigenstates of a non-Hermitian finite
square well for various degrees of PT asymmetry: (a)-(e) PT symmetric, (f)-(j) fixed loss
and varying gain. Z is the dimensionless magnitude of the imaginary part of the potential
(positive imaginary part for fixed loss and varying gain), consistent with the notation in
[109–111]. The fixed loss is given by the polariton parameters as explained in Section 2.2.
Fixed loss does not remove the essential characteristics of the PT symmetry breaking
transition. The coalescence of the real parts remains, and the divergence of the imaginary
parts is simply superimposed on a linear dependence on the gain. This is because the
underlying eigenstates, (h)-(j) are identical for those in the perfectly PT symmetric case.
The PT symmetry breaking threshold is slightly increased.
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(a)
(b)

(c) (d) (e)

(f)
(g)

(h) (i) (j)

Figure 2.6: Lowest two eigenvalues and corresponding eigenstates of a non-Hermitian finite
square well for various degrees of PT asymmetry: (a)-(e) balanced loss and gain, but with
a real perturbation that increases with the imaginary part of the potential, (f)-(j) fixed
loss and varying gain, with a real perturbation that increases with the imaginary part of
the pump-dependent potential. Z is the dimensionless magnitude of the imaginary part
of the potential (positive imaginary part for the cases with fixed loss and varying gain),
consistent with the notation in Section 2.1. The fixed loss, and the ratio of the real part of
the pump-dependent potential to the imaginary part are set by the polariton parameters
as explained in Section 2.2. As shown in (a) and (b), the real part of the pump-dependent
potential removes the PT symmetry breaking transition. The real parts of the eigenvalues
no longer coalesce, and the divergence of the imaginary parts is significantly smoothed.
This is because the eigenstates, (c)-(e), no longer have reflection symmetry about the
centre of the well. The eigenstate that is localised in the gain region (red) has a larger
overlap with the real part of the potential, increasing its energy and precluding coalescence
of the real parts of the eigenvalues. Combining the extra real potential with fixed loss and
varying gain, as shown in (f)-(j) further smooths the PT symmetry breaking transition.
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2.3.2 Restoring the Exceptional Point

As shown in Figure 2.6, the asymmetry associated with the real part of the pump de-

pendent potential removes the EP associated with the PT symmetry breaking transition.

A natural question is whether the EP associated with the transition can be restored. A

similar smoothing of the EP has been observed in nearly PT symmetric optical waveguide

systems, for example plasmonic structures [55, 119]. The smoothing here is considered

undesirable because the singular behaviour of the imaginary parts of the eigenvalues near

the EP can be exploited to implement switching [57]. The smoothing was attributed to a

complex coupling coefficient in the coupled mode theory that varies with gain, a reflection

of the slight lack of PT symmetry [119]. Based on this observation, a method to restore

the exceptional point by modifying the detuning between the waveguides was proposed

[55]. Only the eigenvalue difference of the coupled waveguides, and the gain and loss of

the isolated waveguides is required to compute the optimal detuning, and these could be

inferred from coupled mode simulations. As explained in Section 1.4.2, it is generally

necessary to tune two parameters two drive a system to an EP. For the special case of a

PT symmetric system, only one parameter is required. If the PT symmetry is slightly

perturbed, a second parameter must be introduced to restore the EP.

Inspired by the previous results for waveguides, we have attempted to restore the EP

in our nearly PT symmetric square well by varying a second parameter. Since we deal

with eigenstates of a fixed potential rather than coupled waveguides, there is no clear

way to derive a coupled mode theory that describes the EP for the nearly PT symmetric

square well, so the previous results cannot easily be applied. Instead, we adjust the

position of the pump-dependent potential, moving the position of its edge slightly away

from the centre of the square well (see Figure 2.4). It easy to vary the position of the

laser pump in the experiment, and it is also clear that this may restore the EP. The real

part of the pump-dependent potential removes the EP because it increases the energy of

the eigenstate that experiences gain, that eigenstate being more localised in the pump

region. This precludes degeneracy in the real parts of the eigenvalues. Moving the edge

of the pump confines the lossy mode, increasing its energy as well. We determine the

location that restores the EP by optimising the pump power and position relative to the

edge of the well to enforce simultaneous degeneracy of both the real and imaginary parts

of the eigenvalues. We find that a shift corresponding to about 1% of the well width

restores the EP.

We present several signatures of restoration of the EP4. An EP is defined by

simultaneous coalescence of the eigenvalues and eigenstates, which can only be verified

approximately with numerical simulations, and requires the EP to be exactly found in the

pump power - pump position plane. Instead, the existence of an EP inside a particular

region of parameter space is often verified by the characteristic transition from crossing

to anticrossing of the real and imaginary parts of the eigenvalues, and the behaviour

when the EP is encircled in parameter space [7, 72], both of which are explained in

Section 1.4.2. To this end, we record the power dependence of the eigenvalues for two

4The EP cannot be exactly resolved due to the spectral resolution of the Chebyshev technique, which
is set by the grid resolution. Since the technique involves diagonalising a matrix, high grid resolutions
become impractical.
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different pump edge positions which place the system on either side of the EP. These

results are shown in Figure 2.7, which shows the characteristic transition from crossing

to anticrossing of the real and imaginary parts of the eigenvalues near the EP [52]. For

one pump edge position (Figure 2.7 (a-c)), the imaginary parts of the eigenvalues cross

and the real parts do not. For the other pump edge position, this behaviour is reversed

- the real parts cross, but the imaginary parts do not, indicating that there is an EP in

the pump power - pump position plane located between the two curves. Figure 2.7 (d-f)

and (j-i) shows a few eigenstates evaluated at particular pump powers. For the pump

powers closest to the EP, corresponding approximately to (f) and (j), it is clear that the

eigenstates are nearly identical. This is further evidence for an EP since a simultaneous

coalescence of the eigenvalues and eigenstates is required. Also, near the EP, both

eigenstates are more localised near the left side of the well, which supports the assertion

that moving the pump edge restores the EP by confining the states in the loss region.

We also uncover topological features by tracking the eigenvalues and eigenstates as a

contour in the pump power vs pump position parameter plane is traversed. This contour

either encloses the EP (Figure 2.8), or does not (Figure 2.9). Figures 2.8 (a-c) show that

encircling the EP causes both the eigenvalues and eigenstates to swap. Note that although

we have only plotted the eigenstates at a few selected positions around the contour, we

are able to correctly label them by carefully tracking the eigenvalues. Conversely, as

shown in Figure 2.9 (a-c), when we traverse a contour that is identical apart from a kink

on one side so as not to enclose the EP, neither the eigenvalues nor eigenstates swap. The

exchange of eigenstates when the EP is enclosed is further confirmation of an EP.

It is not surprising that an EP can be achieved by simultaneously modifying the pump

power and position, but it appears that shifting the pump edge position also restores

many of the features of the PT symmetry breaking transition. The lines of constant pump

position shown in Figure 2.7 are both taken very close to the EP. In (c) and (f) it is clear

that the imaginary parts of the eigenvalues are approximately equal and increase slightly

with pump power. After a critical power, they split and diverge from the linear increase

at an equal rate. The real parts merge and then remain approximately equal. This is

very similar to the behaviour for a PT-symmetric square well, shown in Figure 2.5 (g),

where the eigenvalues are purely real below the threshold power, after which they diverge

and become complex conjugates. The trace of the PT symmetry breaking transition is

also reflected in the eigenstates which are shown in Figure 2.7 (j)-(l). Below the critical

pump power, the eigenstates are approximately symmetric, whereas above the critical

power they are highly asymmetric, with one more localised in the lossy region of the well

and the other more localised in the gain region provided by the pump.

There are a few potential limitations to implementing this scheme in experiments.

To restore the EP, only a small shift in the pump edge position of around 1% of the

well width is required. This shift may be smaller than the precision in the laser pump

position which would mean the EP could not be reliably observed. However, the shift

in pump position is required to counteract the asymmetry imposed by the real part

of the pump-dependent potential, so if the real part of the pump-dependent potential

were larger, a larger shift would be required. As detailed in Section 2.2, the magnitude

of the real part of the pump-dependent potential is set by the parameters gR and γR.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.7: Characteristic transition from crossing to anticrossing of the real and imaginary
parts of the real and imaginary parts of the eigenvalues near the EP. Here, we fix the pump
edge position, and then vary the pump power and record the real (a) and imaginary (c)
parts of the eigenvalues of the first two eigenstates. In (g) and (i), we do the same, but
for a different pump edge position. These different pump edge positions put the system
on different sides of the EP, as illustrated in (b) and (h). The characteristic crossing and
anticrossing behaviour confirms the presence of an EP - on one side of the EP (a-c), the
real parts of the eigenvalues do not cross, but the imaginary parts cross. This behaviour
is reversed on the other side of the EP (g-i). The real parts cross and the imaginary parts
do not. This is behaviour is explained in Section 1.4.2. In (d-f) and (j-l) we show the
wavefunctions at the points indicated in (a-c) and (h-i). The wavefunctions closest to the
EP are shown in (f), (l).
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(a) (b)

(c)

Figure 2.8: Encircling the EP with a closed contour in pump power, pump position space.
In (a) and (b) the real and imaginary parts of the eigenvalues are plotted against the
distance around the contour. The contour we trace is also illustrated. In (c), the eigen-
functions are plotted. Although the eigenfunctions are only plotted for a few parameter
values, we can track their identity using the eigenvalues. The eigenstates at the end of the
contour are identical to those at the start except that they have been interchanged. It is
clear that encircling the encircling the EP exchanges the eigenstates.

The polariton-reservoir interaction strength, gR ∼ gexciton-exciton|X2|, depends on the

polariton-exciton detuning since excitonic polaritons interact more strongly with the

reservoir [120]. We have assumed a detuning that results in a fairly weak real part, but

a different detuning will result in a larger real part that will require a larger correction,

which makes experiments more feasible.

As shown in Figure 2.7 (c, i), the imaginary parts of the eigenvalues associated with

the restored EP are large and negative, which limits experimental observability since

modes with large loss may not be populated. This is entirely expected since shifting the

pump edge confines the states to the loss region. In an experiment this could be mitigated

by pumping across the whole well to ensure net gain, but with asymmetry to induce the

EP. As we explained in Section 2.3.1, a net gain will simply shift the imaginary part

of the eigenvalues without removing the behaviour associated with the PT symmetry
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breaking transition.
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(a) (b)

(c)

Figure 2.9: Traversing a contour that does not enclose the EP. In (a) and (b) the real and
imaginary parts of the eigenvalues are plotted against the position around the contour. In
(c), the eigenfunctions are plotted. The contour we trace is also illustrated. Although the
contour has the same start and end points as the one in Figure 2.8 (it is identical apart
from the left side, where there is a kink to avoid the EP), the eigenstates at the end of
the contour are the same as at the beginning. If the EP is not included, traversing the
contour does not cause the eigenstates to swap.
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2.4 Conclusions and Further Work

The PT symmetric well is one of the simplest PT symmetric systems and has the

advantage of being analytically tractable. The PT symmetry breaking transition is

readily understood - successively larger pairs of eigenvalues merge and become complex

conjugates when the non-Hermiticity is increased. Despite the simplicity, a PT symmetric

square well with a stepped imaginary potential exhibits subtle and complicated behaviour.

In particular, there exists tuneable interspersion of collections of eigenvalues that either

remain real or become complex with increasing non-Hermiticity. We have investigated

the possibility of realising a PT symmetric square well for polariton condensates, which

would allow not only for the observation of PT symmetry breaking and the attendant

exceptional point, but also provide a means for experimentally demonstrating previous

theoretical predictions.

A PT symmetric square well for polariton condensates could be implemented

by combining a real potential arising from confinement of the photonic part of the

polariton wavefunction, for example by local cavity lengthening achieved with an

etch-and-overgrowth technique, with a stepped imaginary potential that arises from

the combination of the intrinsic polariton loss and the gain provided by a pump laser.

However, such a potential would not be exactly PT symmetric because the loss is fixed

but the gain varies, and the pump also induces a real potential. We have provided

order of magnitude arguments to show that these asymmetries should remain small,

and also systematically modelled the effect of these asymmetries on the PT symmetry

breaking transition. We find that for typical polariton parameters, the asymmetry of

the real part of the potential removes the PT symmetry breaking transition and the

associated EP since it increases the energy of the state localised in the gain region.

However, we have shown that the EP can be restored simply by slightly shifting

the pump edge position from the centre of the well, which confines the lossy mode,

slightly increasing its energy. Moreover, restoring the EP also restores many of the

features of the PT symmetry breaking transition. Although a quantitative comparison

is not possible, this technique is very similar to the restoration of an EP in nearly

PT symmetric plasmonic systems by adjusting the detuning between coupled modes

[55]. The nearly PT symmetric square well consists of a gain region coupled to a loss

region. Adjusting the pump position relative to the mesa edge changes the sizes of these

regions and hence the detuning. These results show that it should be possible to observe

the PT symmetry breaking transition in a nearly PT symmetric square well for polaritons.

There is still much scope for future work. Focusing first on experimental imple-

mentation, a few technical details must be clarified. It may be necessary to investigate

whether the required shift of the pump edge position can be increased. If the shift is

smaller than the noise in the laser spot position, it will not be possible to reliably restore

the EP in experiments. Operating at a different detuning, which modifies the polariton

parameters, can increase the real part of the pump-dependent potential which should

increase the required shift. Also, the imaginary part of the potential in an experiment

will not have a step profile. Even if the laser profile is sharp, the potentials will be

slightly smoothed due diffusion of the reservoir carriers. It is clear that a larger shift will

be required for a smoothed profile, and it will also be necessary to investigate how much
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smoothing increases the required shift. Most importantly, numerical simulations of the

full ODGPE must be performed. The numerical work we have performed only identifies

the linear eigenstates of the system. Time-dependent simulations will establish whether

these eigenstates are strongly populated by the pumping scheme we use to achieve near

PT symmetry. Full simulations will also clarify the effect of the nonlinearity induced by

polariton-polariton interactions, which may alter the PT symmetry breaking behaviour

as explained in Section 1.4.4.

There is also much more work to be done that goes beyond observation of the PT

symmetry breaking transition associated with the coalescence of the lowest two eigenval-

ues. One obvious question is whether our trick of shifting the pump position restores the

PT symmetry breaking transition for all pairs of states, or just for the lowest two. Previ-

ous analytical work for a PT symmetric square well with a more complicated imaginary

potential [112] would suggest that shifting the pump position may restore the transition

for a limited set of states, interspersed among states that do not undergo the transition.

In fact, this previous theoretical treatment is readily adapted to our square well with

a shifted pump. This would provide predictions about what will happen to states with

higher energy, and may also clarify why shifting the pump edge restores the EP.
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Chapter 3

Polariton Whispering Gallery

Modes in Circular Traps

In this chapter we focus on whispering gallery modes (WGMs) of polariton condensates

in circular traps. We review the results of an experiment that demonstrates excitation of

many WGMs in a circular trap, and model this system using both a linear theory and a

full simulation of the ODGPE. In addition, we present a phenomenological theory that

explains some of more surprising experimental results. We also discuss schemes that have

been used to drive WGMs of optical microresonators to exceptional points, and present nu-

merical results which demonstrate some of these schemes are feasible for polariton WGMs.

3.1 Background

Whispering gallery modes (WGMs) are modes that are highly localised near a concave

surface. The study of WGMs began with the peculiar acoustics of the so-called whispering

gallery at St Paul’s Cathedral in London. In this dome, whispers uttered close to the wall

travel unusually large distances. This phenomenon was studied by Lord Rayleigh [121],

who predicted the existence of modes of the cavity with low principal mode number and

high azimuthal mode number. A simple geometrical model is that WGMs propagate by

repeated reflection around the inside of the cavity, as illustrated in Figure 3.1. Because

they are localised to the surface, the intensity of a WGM decays with the propagation

distance, rather than the cube of the propagation distance as is the case for free waves

[81]. In addition, losses upon reflection are relatively small, so WGMs typically have very

high quality factors.

WGMs are generally present given a curved boundary or confining potential, and

have been observed in a wide range of systems, including optical resonators [81], electron

matter waves [122], exciton-polaritons [123, 124], and even antihydrogen [125]. WGMs

have been most useful in optics. They are particularly attractive for a number of reasons:

low mode volumes and high Q factors cause large field intensities and imply long ringdown

times, and the localisation near the resonator boundary means WGMs are sensitive to

external perturbations. WGM resonators facilitate research in quantum optics [126],

nonlinear optics [126], lasers [127], and sensing [128].

47
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Figure 3.1: Ray picture of WGM propagation. WGMs propagate by repeated reflection
from the cavity walls. Reproduced from [81].

Exceptional points (EPs) of WGMs in optical systems have been used to demonstrate

interesting effects such as thresholdless single mode operation [56], and enhanced sensing

[61, 62]. EPs are in principle easy to attain for polaritons because of intrinsic loss due to

mirror leakage, and the ease of manipulating gain using optical pumping. This makes the

study of EPs in polariton systems particularly promising.

3.2 Previous Work

3.2.1 WGMs for Polaritons

There have been multiple demonstrations of WGMs for polaritons. One branch of

research studies ZnO micropillars. These micropillars provide strong confinement for

photons, so polaritons are formed by the coupling of photonic WGMs to excitons [129].

ZnO pillars are an attractive experimental system because they are readily grown using

chemical methods, and ZnO is a promising material for photonic devices [130]. However

the polariton lifetime is limited by loss through the sides of the pillars. Strong coupling

and the formation of exciton-polaritons has been demonstrated [123], as has polariton

lasing [131, 132]. Energy relaxation dynamics has also been comprehensively studied,

with the conclusion that parametric scattering between different WGMs in multimode

condensates drives effective cooling [124].

WGMs of polariton condensates have also been observed in optically-induced annular

traps [15]. In the regime studied, condensation into a particular mode of the trap is

driven primarily by gain, leading to occupation of only a few modes which have the

lowest condensation thresholds. By varying the strength and diameter of the pump, the

gain of different modes - which depends on both the mode’s overlap with the pump and

the intrinsic mode shape - can be tuned, enabling the selection of particular modes, and

switching between them. This includes trapped modes that are localised inside the pump

annulus and also WGMs. Gain-based selection of WGMs is a slightly counterintuitive

result since these modes are localised in the pump region, at the location of a repulsive

potential which is created by a pump-injected reservoir [29]. The results are bolstered by
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a theory of mode selection in trapped polariton condensates, which carefully considers loss

and gain to formulate condensation thresholds in terms of solutions of a non-Hermitian

eigenvalue problem [9]. This work represented a significant advance in the understanding

of mode selection in polariton condensates, which was previously understood in relatively

simplistic terms [21]. However, a serious weakness is that it only considers condensation

thresholds and thus cannot provide an account of population redistribution due to

relaxation processes.

Recent theoretical work focuses on frequency comb generation using polaritons in

semiconductor microring resonators [133]. The authours consider a microring that is

coupled to a microwire. The microwire, excited with CW pumping, provides a resonant

excitation to the microring. These structures can be fabricated with lithography or

etch-and-overgrowth techniques [23]. Using coupled equations of motion for photons and

excitons, it is possible to show that the whispering gallery modes can be significantly

blueshifted by the excitonic nonlinearity. In addition, the nonlinearity allows for mode-

locked pulses, which generate frequency combs.

Our work focuses on a relatively shallow circular potential for polaritons which is

formed by local cavity lengthening, accomplished with an etch-and-overgrowth technique

[23], discussed in Section 1.3. It has been shown in experiments that the induced trap

supports several bound states [26], and this experimental work is bolstered by theoretical

analysis [27]. Because polariton confinement is achieved by confining the photonic

component of polaritons, a rigorous treatment must consider the confined photon modes,

which are computed and then coupled to the planar exciton modes. The photon modes are

discretised due to the local cavity lengthening, which creates an optical WGM resonator

since the photon energy depends on the cavity length. This leads to discretisation of the

polariton modes as well.

Building on this, our work studies polaritons in a similar trap formed by local cavity

lengthening. The existence of whispering gallery modes in such traps was hinted at in

the early theoretical work [27], but our work focuses exclusively on them, in particular

on non-Hermitian aspects of these polariton WGMs. In contrast to the experiments with

optically-induced potentials, trapping is provided by cavity lengthening rather than the

pump, which also induces gain. This allows us to more carefully manipulate gain, and

explore non-Hermitian effects. In addition, since gain is decoupled from the trapping

potential, many modes can be populated. This is aided by our focus on relatively photonic

detunings, where energy relaxation processes, mediated by exciton-exciton scattering

[134] or interaction with lattice phonons [6] are weaker. In contrast with the recent

theoretical work that emphasises the effects of nonlinearity [133], we are investigating the

regime where these effects are negligible.

3.2.2 WGMs and EPs

Optical whispering gallery mode resonators (WGMRs) have been a fruitful platform

for observing EPs because of the degeneracy between counterpropagating modes, and
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because the strong localisation of WGMs near the boundary of the resonator means

they are readily perturbed. The perturbation may be realised by a modification of

the resonator boundary, or by placing a particle nearby, but outside the resonator to

induce scattering between counterpropagating WGMs. To demonstrate an exceptional

point it is necessary to adjust two parameters. Generally, the perturbation lifts a

degeneracy in the real part of the energy, or couples two modes that are close in energy.

The imaginary parts of the energies are then adjusted by tuning the imaginary part

of the resonator refractive index to achieve an exceptional point. Alternatively, a PT

symmetric system of coupled WGMRs is arranged, and the system is driven through

the PT symmetry breaking transition to achieve an exceptional point. Here, the strong

localisation of WGMs allows for coupling to be mediated and tuned simply by placing the

resonators close together. Exceptional points are of particular interest for WGMRs be-

cause these resonators are used to construct sensors [81, 125]. The square-root behaviour

of eigenvalues near an exceptional point can be used to greatly enhance sensitivity [59–62].

One approach to creating an EP in a WGMR is to induce asymmetrical scattering of

counterpropagating WGMs by systematically perturbing the boundary of the resonator.

This is best understood using a phenomenological toy model that describes the coupling

between counterpropagating WGMs with the same azimuthal quantum number in cavities

that lack mirror symmetry. Examples of such cavities include asymmetric limaçons [67]

and microspiral cavities [66], illustrated in Figure 3.2. In the travelling wave basis, the

Hamiltonian reads

H =

(
E0 0

0 E0

)
+

(
Γ V

ηV ∗ Γ

)
. (3.1)

The eigenvalues of the first matrix represent the energies of the counterpropagating modes

in an unperturbed resonator, and the second matrix represents the coupling induced by

the perturbation. The real parameter η describes the degree of asymmetry, and when

η 6= 1, the Hamiltonian is non-Hermitian. In the case of a spiral cavity, illustrated in

Figure 3.2, the cause of the asymmetry is clear - waves propagating clockwise encounter

the notch and are scattered to the counterclockwise direction, but this does not happen

to waves propagating in the other direction. The eigenvalues and eigenvectors are

E± = E0 + Γ±√η|V |, (3.2)

and

α± =
1√
2

(
1

±√ηe−iδ
)
, (3.3)

where δ is the complex argument of V . When η 6= 1, the eigenvectors are not orthogonal,

and for small values of η the eigenstates are nearly degenerate but are not orthogonal. In

the limit of perfectly asymmetrical scattering, η = 0, and the eigenvalues and eigenvectors

simultaneously coalesce. That is, an EP is reached. The physical reason for the EP is

completely clear. When η = 0, waves travelling CW are all scattered but waves travelling

CCW are not affected, so only one eigenstate remains.

It has been shown that perfectly asymmetrical scattering and hence an EP can be

achieved using two external scatterers [68], for example silica nano-tips placed near an

optical WGMR. This scheme was used to operate an optical WGM sensor near an EP,
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Figure 3.2: Microspiral Cavity. A small notch induces asymmetric scattering between
counterpropagating (CW and CCW) WGMs with the same azimuthal mode number, re-
sulting in a non-Hermitian two-level Hamiltonian (Equation (3.1)). Reproduced from [66]

yielding a significant improvement in sensitivity [60, 61].

A single external scatterer will introduce only symmetrical scattering. However, inter-

ference between waves scattered by two different scatterers allows a pair of scatterers to

induce asymmetrical scattering. The interference can be tuned simply by adjusting the

angle between the scatterers. For a given azimuthal mode number, m, a single external

scatterer lifts the degeneracy between the even WGMs (which have a cos(mφ) angular de-

pendence) and odd the WGM (which have a sin(mφ) angular dependence). If the scatterer

is large enough to perturb both modes then the (Hermitian) perturbation Hamiltonian is

given in the standing-wave basis by

H1 =

(
2V1 0

0 2U1

)
, (3.4)

where the entries are complex and |U1| < |V1| since the even parity mode is perturbed

more than the odd parity mode for small scatterers. The parameters V1 and U1 must be

calculated numerically, for example using a boundary-element method [135]. If a second

scatterer is added with an angular position φ = β, then in the travelling-wave basis the

total perturbation is given by the Hamiltonian

H =

(
Ω A

B Ω

)
, (3.5)

where

Ω = Ω0 + V1 + U1 + V2 + U2, (3.6)

A = V1 − U1 + (V2 − U2)e−i2mβ, (3.7)

and,

B = V1 − U1 + (V2 − U2)ei2mβ, (3.8)

where Ω0 is the frequency of the unperturbed mode. The dependence on β reflects the
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phase acquired by a wave when propagating between the scatterers. The eigenvalues and

eigenvectors are

Ω± = Ω±
√
AB, (3.9)

and

ψ± =

( √
A

±
√
B

)
. (3.10)

In general, Vj and Uj are complex since the scatterers also cause loss, so the matrix

in Equation (3.5) is non-Hermitian. Clearly, when either A = 0 or B = 0, the scattering

is completely asymmetric and both the eigenvalues and eigenvectors coalesce. That is, an

exceptional point occurs. Completely asymmetric scattering can be achieved by tuning

the angle between the scatterers. For example, in the case of identical scatterers, for

which V1 = V2 and U1 = U2, setting β = π/2m yields e−2imβ = −1, and hence A = 0.

This means that the CW to CCW scattering due to the first scatterer is exactly balanced

by that due to the second scatterer. For EPs induced by asymmetric scattering, chirality

of the eigenstate is reflected in unidirectional propagation. Asymmetric scattering means

that only one of the two counterpropagating modes is preferred. This scheme has been

used to create a WGM sensor which operates at an EP. Tuning the sensor to an EP

increases its sensitivity to a target particle because of the square-root dependence of

energies in the vicinity of an EP [59–61]. More recently, it has been proposed that

asymmetric scattering induced by coupling a WGM resonator to a waveguide with a

mirror at only one end yields a hypersurface of EPs, which may allow for the creation of

an EP sensor which is robust to unwanted perturbations [136].

Instead of coupling degenerate counterpropagating WGMs, an EP can be realised

by coupling WGMs to modes with a higher principal quantum number by making a

small deformation of the cavity boundary. Because of the high degree of symmetry, it is

generally possible to find WGMs that are nearly degenerate to modes that have a higher

principal quantum number. This means that the required boundary deformation can

be a thousand times smaller than the cavity radius [137, 138]. A perturbation theory

for nearly-degenerate modes of circular cavities has been developed which allows for the

magnitude of the required perturbation to be calculated [139, 140]. Tuning to an EP

generally requires two parameters, so a two-parameter perturbation is required, or it is

necessary to tune the imaginary parts of the mode energies by adjusting the imaginary part

of the cavity refractive index. This scheme can be adapted to achieve higher-order WGMs.

Similarly, an EP can be engineered by coupling internal modes of a WGMR to external

modes. Internal modes are the conventional bound states, which include WGMs. They

are localised inside the cavity and have low decay rates. External modes, in contrast,

are localised outside the cavity and have a large decay rate [141]. The real parts of the

relevant modes can be brought to degeneracy simply by adjusting the real part of the

cavity refractive index. The imaginary parts may be brought to degeneracy either by

adjusting the imaginary part of the refractive index, or by introducing a perturbation to

the cavity boundary that degrades the Q factor of the internal mode to match it to that

of the external mode.

Finally, there are a number of schemes that use the PT symmetry breaking transition
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to achieve an exceptional point [53, 62, 77, 78]. PT symmetry can be attained either in

a photonic molecule consisting of two coupled WGMRs, one of which experiences gain

and the other loss, or for a single WGMR by imposing periodic gain and loss regions

which line up with the antinodes of the WGM. Both systems are described by the PT

symmetric two-level Hamiltonian in Equations (1.29) and (1.44).

Achieving EPs and PT symmetry breaking in polariton WGMs is attractive for a num-

ber of reasons. Polaritons are already a promising system for future optoelectronic devices

[142], and effects associated with EPs of photonic WGMs such as enhanced sensing [61],

and thresholdless single mode lasing [56] could be harnessed in polaritonic devices. Also,

a demonstration of PT symmetry breaking in polariton condensates is attractive since

they are an inherently quantum system. Polaritons also have a few properties that may

be useful in engineering EPs of a PT symmetry breaking transition. Real and imaginary

potentials for polaritons can be easily induced with a laser pump. The real potential arises

from repulsive interactions between polaritons and reservoir carriers that are created by

the pump whereas stimulated scattering from the reservoir to the condensate induces gain

which manifests as an imaginary potential. To this end, the rest of this chapter is devoted

to aspects of polariton WGMs in a circular trap.

3.3 Experimental Results

The circular trap is formed by patterning a shallow circular mesa on top of the spacer of

the microcavity, which lengthens the cavity slightly, lowering the energy of the photon

mode, as illustrated in Figure 1.6 and explained in Section 1.3. Such traps have previously

been studied theoretically [27] and experimentally [26], but the focus was not on WGMs.

The trapping potential for polaritons is approximately 5.1 meV, and the radius of the

trap is approximately 10 µm. The trap is excited by shining a small (2 µm FWHM) CW

laser pump spot on the boundary of the mesa. The spatial and momentum distribution of

photoluminescence and spatially-resolved spectrum are recorded in the experiment. The

experiment is performed at a relatively photonic detuning, corresponding to a photonic

fraction, |C|2 ≈ 0.88, where energy relaxation processes are relatively weak [6, 134],

allowing for the population of many states.

The experimental features with a single pump spot on the edge of the mesa are shown

in Figure 3.3. The spectrum, Figure 3.3 (a), shows the occupation of a large number

of discrete energy states with narrow linewidths that are localised near the edge of the

trap. These states span an energy range of over 15 meV, with many above the potential

barrier (5.1 meV). They are WGMs of the polariton condensate in the circular potential.

For WGMs with energies higher than the trapping potential barrier, confinement is

provided by a combination of the mesa potential and an effective centrifugal potential, as

we explain in Section 3.4.1 below. A few other features are apparent: laterally-trapped

states with energies lower than the mesa potential barrier are occupied, and there

is emission from the planar condensate outside the mesa whose energy is set by the

potential induced by the pump. Our simulations in Section 3.4.2 confirm that the energy

of this planar condensate is several meV higher than the mesa potential barrier. Some

asymmetry in intensity between the two sides of the mesa is also evident. This is a
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(a)

(b)

(c) (d) (e)

Figure 3.3: Experimental features of polariton condensation in a circular trap. The trap
has a radius of 10 µm and is excited with a 2 µm pump spot near its edge. The spectrum,
(a), is recorded by taking a slice across the diameter of the trap, 90◦ from the pump
spot, as illustrated in (e). A large number of modes spatially localised near the trap edge
are occupied. These are whispering gallery modes. Many of these modes have energies
larger than the trapping potential, and are present due to radial confinement provided by
the combination of the trapping potential and an effective centrifugal potential (see Sec-
tion 3.4.1). Significant planar emission is present around 1.5705 eV, which our simulations
(see Section 3.4.2) show is a few meV above the potential barrier, itself at 1.5685 meV.
Occupation of trapped lateral modes below the energy of the confining potential is also
evident. Asymmetry between the left and right sides of the trap is present due to the
exciton-photon detuning gradient, which causes a small potential gradient. A line profile,
(b), of the emission taken at r ≈ 10 µm (see (e)) confirms the occupation of many modes
and reveals an envelope in the amplitudes. Energy-filtered photoluminescence is shown in
(c) and (d), taken at approximately 1.571 eV and 1.573 eV, corresponding to l = 24 and
l = 28 respectively.
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consequence of the exciton-photon detuning gradient of the sample, which imposes a

small linear potential gradient of approximately 0.1 meV µm−1 for polaritons. A line

profile, Figure 3.3 (b), of the spectrum taken at r ≈ 10 µm confirms the occupation

of discrete modes with narrow linewidths. An envelope in the emission intensity is

also evident. The states closest in energy to the planar condensate are most strongly

populated. We also show energy-filtered photoluminescence, Figure 3.3 (c) and (d), taken

at approximately 1.5790 eV and 1.571 25 eV respectively. An azimuthal nodal pattern

typical of a WGM is apparent. Some emission from the planar condensate is also present

at the lower energy, as is the asymmetry due to the detuning gradient. In addition to

the planar emission at the lower energy, both filtered images exhibit some emission inside

the potential opposite to the pump spot. The pattern of this emission is identical to

short-lived components in the spatial mode pattern caused by an effective perturbation to

the trap boundary, which have been predicted for optical WGMRs with a small boundary

perturbation [140]. Counting the number of azimuthal antinodes reveals the azimuthal

quantum number of the state. When this is done for all of the states in Figure 3.3 (a), a

sequential increase in azimuthal quantum number is revealed. The quantum numbers are

shown in Figure 3.3 (b). These results demonstrate excitation of a large number of WGMs.

The most interesting behaviour emerges when the condensate is excited by two pump

spots as shown in Figure 3.4. Figure 3.4 (a) shows a line profile in energy, which is

produced by first recording the spectrum by taking a slice across the mesa diameter,

perpendicular to the line joining the two pump spots, and then extracting a slice at

r ≈ 10 µm, as illustrated in (e). From bottom to top, the energy profile with only the

first spot, only the second spot, and finally the two spots (blue) are shown. The most

striking feature is a massive increase in polariton population coupled with a blueshift of

exactly half the mode spacing, or free spectral range (FSR) when the second pump spot

is added. Filtering the photoluminescence and counting antinodes demonstrates that the

new spectral peaks correspond to blueshifted WGMs. The increase in population can not

be attributed solely to the increased excitation density with two pump spots since the

power in the original pump spot is split in half to generate the two spots.

The power dependence of the blueshift is shown in Figure 3.4 (b), where we focus

on a few states and generate a waterfall plot by varying the power of the second pump

spot. The blueshift and amplitude of the peaks initially increase rapidly with power. At

higher powers, the blueshift saturates at half the FSR whereas the amplitude continues to

increase with power. This is made clearer in Figure 3.4 (d), where we have extracted and

plotted the blueshift against peak amplitude for each of the peaks shown in Figure 3.4 (b).

Since the blueshift is accompanied by a large increase in population, it is natural to as-

sume that the blueshift is caused by polariton-polariton interactions, which induce a local

blueshift of gC n(x), where n(x) is the polariton density, and gC is the polariton-polariton

interaction strength. However, elementary analysis of the data shows that the blueshift

cannot be attributed to polariton-polariton interactions. Figure 3.4 (d) shows that for

high powers, the blueshift saturates while the population increases by up to a factor of 3.

If the blueshift were caused by polariton-polariton interactions, it would increase linearly

with polariton population. Also, in Figure 3.4 (c), we extract both the blueshift and

amplitude of each of the peaks shown in Figure 3.4 (a) and plot these. There is no clear
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correlation between the blueshift and population increase. If the blueshift was caused

by polariton-polariton interactions, a linear correlation would be seen. This evidence

demonstrates that the blueshift cannot be attributed to polariton-polariton interactions.
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(a) (b)

(c) (d)

(e)

Figure 3.4: Experimental features of polariton WGMs in a circular trap excited with two
pump spots. Both pump spots are approximately 2 µm (FWHM) in diameter, and are
placed near the trap boundary, 90◦ apart. A line profile in energy, (a), is created from
spectral data as in Figure 3.3 (b). The relative position of the pump spots and slice are
shown in (e). From bottom to top, the energy profile with a single spot, the other spot,
and then two spots (blue) are shown. With two spots, the peaks are shifted right by
approximately half the mode spacing, or free spectral range (FSR), and their heights are
increased. A waterfall plot of energy profiles, (b), produced by increasing the power of
the second pump spot (from zero until it is equal to the power of the first spot) shows
the blueshift increases rapidly with power until it reaches approximately half the FSR.
In (d) we plot the dependence of blueshift on peak height (for increasing power of the
second pump spot) for each of the peaks shown in (b). In (c) we extract and plot both
the blueshift and occupation increase when the second pump spot is added for each peak
shown in (a). There is no correlation between the occupation increase and the blueshift.
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3.4 Theoretical Modelling

3.4.1 Whispering Gallery Modes

We consider polariton condensates in a circular trap which is formed by local length-

ening of the microcavity, fabricated with an etch-and-overgrowth technique [23]. Since

lengthening induces a potential for photons, the most rigorous approach to this system

is to compute the trapped photon modes and then couple them to plane wave excitons

to find new polariton modes [27]. A simpler approach is to assume that the lengthening

simply induces an effective potential for polaritons, whose height is easily estimated

experimentally from the energy shift of the lower polariton state in the planar region

compared to that in a large mesa (approximately 100 µm in diameter). A further

refinement on this approximation would be accounting for the difference in effective

mass inside and outside the trap. Cavity lengthening changes the detuning and hence

effective mass. We will see that these approximations are justified - this simplified model

accurately predicts the energies of WGMs.

We first study the single-particle states by neglecting nonlinearity and both loss and

gain. With these approximations, the ODGPE, Equation (1.20) reduces to a Schrödinger

equation for a single-particle wavefunction in circular potential. Converting to radial

coordinates, (r, θ), and assuming a separable wavefunction, ψ(r, θ) = R(r)Y (θ), where the

radial wavefunction, R(r), is further rescaled as R(r) = u(r)/
√
r, yields [81, 122, 143]

− ~2

2m
u′′(r) +

(
V (r) +

~2

2m

1

r2

(
l2 − 1

4

))
u(r) = Eu(r), (3.11)

and

Y ′′(θ) = −l2Y (θ), (3.12)

where E is the energy of the WGM, l is the azimuthal quantum number (orbital angular

momentum), and m is the effective mass of the lower polariton. The angular dependence,

Equation (3.12) is easily solved as

Y (θ) = a exp(ilθ) + b exp(−ilθ). (3.13)

The rotational symmetry implies periodic boundary conditions, so l takes integer

values, resulting in a discrete set of mode energies. The term a exp(ilθ) in Equation

(3.13) represents a travelling wave that propagates in the clockwise direction, and which

has an azimuthally uniform position density. The second term represents a travelling

wave that propagates in the counterclockwise direction. When a and b are both nonzero,

interference between the travelling waves results in a standing wave, with 2l antinodes.

Equation (3.11) is simply a one-dimensional Schrödinger equation with a potential,

Veff = V (r) + ~2
2m

1
r2

(
l2 − 1

4

)
. The second term can be interpreted as an effective

centrifugal potential that increases with l. Combined with an external barrier potential,

this results in an effective potential with a local minimum near the barrier, as illustrated

in Figure 3.5. Because of the local minimum, WGMs are confined near the barrier.

Equation (3.11) is easily solved numerically, for example by deriving and solving a
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transcendental equation from matching boundary conditions [143], or by the shooting

method [144]. If a transcendental equation is solved, the computed energies can be

verified to arbitrary accuracy.

To model the experiment we consider a circular step potential,

V (r) =

{
0, r < r0

V0, r ≥ r0
, (3.14)

where V0 = 5.1 meV and r0 = 10 µm.

3.4.2 Linear Theory

To find the energies of WGMs we solve Equation (3.11) for a given value of l using a

simple direct multiple shooting method [144], although more advanced shooting methods

specially adapted to the radial Schrödinger equation are also available [145]. Shooting

methods are a class of numerical techniques that solve boundary value problems by

reducing them to initial value problems [144]. The initial value problem is solved with

varying initial conditions until a solution which matches the boundary value is found. The

variation of the initial conditions is typically formalised as a root-finding or optimisation

problem, which can be solved with well-known techniques such as Newton’s method.

The boundary value problem to be solved is often also an eigenvalue problem. In this

case, the trial eigenvalue is optimised for agreement with the boundary conditions. The

trial eigenvalue is reflected in both the initial conditions and the equation of the initial

value problem. A simple refinement is the direct multiple shooting method, in which the

initial value problem is solved on several smaller domains, and solutions are optimised

for continuity at the boundary between the subdomains as well as agreement with the

boundary conditions. This technique is especially useful for problems with discontinuities,

such as the external step potential in our system. The discontinuity is naturally handled

by matching at the point of discontinuity.

For a given guess of the energy, we integrate Equation (3.11) forwards from r ≈ 0

and backwards from r � r0 to r0, matching at the location of the potential barrier, r0.

The initial conditions for integration are readily derived from the asymptotic forms of

Equation (3.11) for small and large values of r. We use Newton’s method to optimise

the trial energy for continuity of the wavefunction and its derivative at r0. Continuity

indicates that the correct energy has been found1. Because this method comprises only

numerical integration of a one-dimensional linear differential equation and root finding,

convergence is easily confirmed. Moreover, as we discuss below, nearly-exact analytical

expressions for the bound states are also available for comparison. We present some

computed wavefunctions in Figure 3.5. As is well known for shooting methods, it is vital

to integrate backwards from r � r0 outside the mesa rather than in the other direction.

This suppresses the unbound solution that would otherwise grow exponentially with r.

The shooting method is easily adapted to account for the difference in effective mass

1Because the radial Shröedinger equation is a linear differential equation, we are free to multiply solu-
tions (and their derivatives) by a fixed scaling factor. We therefore scale the left solution (and its derivative)
to enforce continuity of the wavefunctions at the boundary, and optimise energy to minimise the difference
between the derivatives.
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(a) (b)

Figure 3.5: Radial wavefunction ψ(r) and effective potential for: (a) l = 5, (b) l = 25
for the potential in Equation (3.14). The effective potential consists of a finite square
well potential and a centrifugal potential that arises from the circular geometry. The
combination localises the radial wavefunction near the edge of the barrier.

inside and outside the mesa, but we find this is not necessary in practice. Because we

are interested in comparing the computed mode energies to those in the experiment,

the lower polariton energy must be subtracted from the experimental data. The lower

polariton energy and also effective mass can be measured experimentally by fitting the

parabolic part of the free polariton dispersion curve, but we treat both the effective mass

and lower polariton energy as fitting parameters and also optimise them for best fit with

the experimental data. Our values agree well with the experimental ones.

The numerical and analytic results are shown alongside the experimental data in

Figure 3.6. Energies of the bound states, which lie below the potential barrier are also

Figure 3.6: Experimental WMG energies for WGMs with increasing azimuthal quantum
number, l, compared to shooting method calculations. Bound state energies computed
with the analytic expressions given in [146] are also shown.
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shown. These are calculated using analytic expressions based on approximations to the

transcendental equations that arise from matching at the boundary of the trap [146]. We

find that the linear theory closely matches both the experimental results and the bound

state energies computed with analytical formulas. This simple result confirms that the

modes observed in the experiment are indeed WGMs. It also shows that it is sufficient

to model the local cavity elongation as an effective potential for polaritons. It also

demonstrates that the experiment operates in the linear regime since with one pump spot,

the experimental mode energies are not blueshifted from their linear counterparts. The

lack of blueshift is attributable to the highly photonic detuning used in the experiment,

which reduces the polariton-polariton interaction strength which arises from the excitonic

part of the polariton wavefunction.

3.4.3 Mean Field Simulations

We also solve the time-dependent ODGPE, Equation (1.16) for the potential in Equa-

tion (3.14), excited by a 2 µm (FWHM) pump laser spot situated just inside the mesa to

faithfully model the time dynamics and nonlinear physics of the system. The ODGPE

contains a number of detuning-dependent parameter such as the polariton effective mass,

interaction strength and decay rate, as explained in Section 1.2. In some studies these

parameters are simply estimated, often using a detuning of zero. Because the photonic

detuning in our experiment implies weak nonlinearity, we instead calculate these detuning-

dependent parameters. Equation (1.12) shows that the detuning can be inferred from the

cavity and polariton effective masses. The first is measured experimentally, and the sec-

ond is obtained by fitting the linear results as explained in Section 3.4.2. This allows us

to compute the ODGPE parameters given estimates of the cavity lifetime, and theoreti-

cal best estimate of the exciton-exciton interaction strength [120]2. A phenomenological

momentum-dependant energy-damping term, given in momentum space by

dψ̃(k, t)

dt

∣∣∣∣∣
relax

= −A|k|3ψ̃(k, t), (3.15)

where the parameter A models the strength of the relaxation, is added to Equation (1.16).

This both models the energy relaxation of polaritons and suppresses the modulational

instability of the ODGPE [17, 114, 150]. We also add a small noise term to the reservoir

equation,

dn(r, t)|noise = αn(r, t)dn, (3.16)

where the parameter α models the strength of the noise, and dn is a stochastic variable, to

model thermal fluctuations and quantum noise caused by scattering into the condensate

and decay [151].

The ODGPE is readily solved with a standard split-step (Fourier) method [152], in

which time evolution is split into small steps, and each time step is split into a linear

part and a nonlinear part. The linear part of the time evolution is performed in the

Fourier domain and the nonlinear part is performed in the time domain. More specifically,

2This has been the subject of some recent debate [147], but current consensus is that the theoretical
estimate is correct [148, 149].
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split-step methods are used to solve PDEs of the form

∂tu(x, t) = (A+B)u(x, t), (3.17)

where A and B are operators, when the split equations

∂tu(x, t) = Au(x, t)

∂tu(x, t) = Bu(x, t) (3.18)

are simpler to solve. The solution to equation (3.17) after a small time h is approximately

given by

u(x, h) ≈ eh(A+B)u(x, 0) ≈ ehAehBu(x, 0), (3.19)

where the second step incurs an error on the order of h2 if A and B do not commute. A

number of splitting schemes are possible. For example the splitting

eh(A+B)u(x, 0) ≈ e
1
2
hAehBe

1
2
hA (3.20)

is called Strang splitting an incurs an error on the order of h3.

The nonlinear Schrödinger equation is amenable to pseudospectral split-step methods

because the Fourier correspondence

∂x
F−→ ikx, (3.21)

means that the dispersive part is easily handled in the Fourier domain. More concretely,

if neglecting the reservoir for the sake of clarity, we write the ODGPE in the form

∂tψ = −i
(
D +N [|ψ|2, nR]

)
ψ (3.22)

where D = c∇2, and N [|ψ|2, nR] is the remaining nonlinear part, and then split Equa-

tion (3.22) as

∂tψ = −iDψ, (3.23)

∂tψ = −iN [|ψ|2, nR]ψ, (3.24)

Equation (3.23) is easy to solve in the Fourier domain:

ψ(x, h) = F−1
[
e−ichk

2F [ψ(x, 0)]
]
, (3.25)

where F denotes the Fourier transform. Equation (3.24) can be solved approximately as

ψ(x, h) = exp
(
−ihN [|ψ(x, 0)|2, nR]

)
ψ(x, 0). (3.26)

This reasoning is easily adapted to other splitting schemes, and the equation for the reser-

voir is simple to solve approximately under the approximation that reservoir carriers are

almost stationary. Also, more refined methods are available, for example a fourth-order

Runge-Kutta method in the interaction picture [153]. A major advantage of the split-step

method over finite-difference methods is that it only requires Fourier transforms and

elementwise matrix multiplication, both of which are accelerated on modern graphical
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processing units (GPUs). A very simple implementation on a GPU gives approximately

a hundredfold speed increase over a CPU. Pseudospectral methods also allow for high

spatial accuracy despite relatively coarse discretisation grids and large timesteps [152, 154]

One subtlety of this method is that the Fourier periodicity imposes periodic boundary

conditions, which means that if the condensate reaches the edges of the integration region

it will interfere with itself. We avoid this by using a large integration region relative to

the pumping region because the condensate rapidly decays outside the pumping region,

and also by multiplying by a window function that ensures the condensate density is equal

to zero at the boundaries of the integration region. The conventional Gross-Pitaevskii

equation possesses a number of conserved quantities that can be used to validate numerical

solutions, but the non-Hermitian nature of the ODGPE means that these quantities are

no longer conserved. However, two simple considerations allow us to maintain the validity

of numerical solutions. The discrete Fourier transform imposes a Nyquist limit on the

maximum momentum that can be resolved. To ensure this is not a problem we record the

momentum-space wavefunction and ensure that there is not significant occupation near the

Nyquist momentum. Also, the timestep must be small enough that the integration scheme

remains numerically stable. Determining the numerical stability of split-step methods as

applied to the ODGPE is not trivial. However, numerical instability of split-step methods

is known to manifest as rapid growth in only a few Fourier modes [152], which can be

identified by monitoring the momentum-space wavefunction. Finally, we can compare the

energies of WGMs identified in numerical simulation to those calculated in Section 3.4.2,

and monitor the mean-field energy, which is given by

µ(t) = −1

4

∫ [
∇2|ψ|2 − 2|∇ψ|2 − 4gC |ψ|2

]
dr∫

|ψ|2dr
. (3.27)

We perform calculations on a 50 µm × 50 µm grid (for a mesa with radius 10 µm)

with 512 grid points in each dimension with a timestep of approximately 0.03 ps. This

timestep is set by the desired spectral energy resolution and is more than sufficient to

ensure numerical stability.

The solution of the ODGPE is a record of the order parameter, ψ(r, t), as a function

of time. To compare with the experiment, we must identify WGMs and identify their

azimuthal quantum numbers, as well as infer their energies. This is easily accomplished

with spectral filtering. To generate a spectrum, we select a time interval and then record

the wavefunction at each time step in this interval. Aggregating these time-slices in an

array and then taking a Fourier transform along the time axis produces energy-resolved

wavefunction slices from the original time-resolved data. To compare with the experi-

mental spectra, we spatially filter out all but a narrow strip of the wavefunction which is

offset 90◦ from the pump spot. This produces a spatially-resolved energy profile, as shown

in Figure 3.7. A discrete set of energies strongly localised to the mesa edge are clearly

visible, which correspond to WGMs. To verify this, we return to the energy-resolved

wavefunctions and extract a spatial distribution, ψ(r, E), at the relevant energy. We

present an example of such an energy-resolved wavefunction in Figure 3.8. The phase and

spatial distributions of the filtered wavefunctions near the barrier are identical to that

of a WGM. Counting the lobes the spatial distribution or the dislocations in the phase

distribution allows us to infer the azimuthal quantum number, l, of the WGMs, and this
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Figure 3.7: Spatially-resolved spectrum extracted from ODGPE simulations. The edge of
the trap is located at x = 10 µm, and the depth of the trap is 5.1 meV. Several WGMs
are apparent, indicated by the discrete energies and spatial localisation near the edge of
the trap. Note that WGMs are present up to energies of 30 meV, but are not visible in
the image because the low-energy modes are much more strongly occupied.

Figure 3.8: Filtered wavefunction for the l = 20 mode with E = 5.58 meV extracted from
the ODGPE simulation. The value of l can be extracted by counting peaks in the density
the phase steps.
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Figure 3.9: Experimental WGM energies and WGM energies extracted from ODGPE
simulations. Error bars in the simulation results arise from the nonzero linewidths of
WGMs in the simulation. This linewidth is set both by the intrinsic linewidth of the
state, and the spectral integration time. We see close agreement between experiment
and the simulation. The small discrepancy is due to polariton-polariton interactions,
which blueshifts the numerically computed energies as easily verified by setting gC = 0
in the simulation. Note that at lower energy, only every second mode is occupied in
the simulation. This behaviour is still not understood, but it is certainly related to the
pumping configuration as the threshold for full occupation is changed by moving the pump
laser spot relative to the trap edge. Also, it mostly affects modes with energies below the
trapping potential barrier.
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task is easily automated. We next consider all the states from Figure 3.7 and compute the

azimuthal quantum number, l, of the WGMs corresponding to each peak. These values,

alongside the experimentally observed values and the linear results from Section 3.4.2

are plotted in Figure 3.9. It is clear that the experimental results are reproduced by

simulations of the mean-field model.

There is a small discrepancy in that the energies from mean-field simulations are

consistently slightly larger than those observed in the experiment. These discrepancies

are explained by the nonlinear polariton-polariton interaction, which is easily confirmed

by setting gC = 0 in the simulation. With no interactions, our simulated energies match

exactly the experimental energies. It is likely that our simulation parameters result in

condensate densities somewhat higher than those in the experiment. It is difficult to

exactly reproduce population densities because the ODGPE treats phenomenologically

both relaxation from free carriers to reservoir polaritons, and stimulated scattering from

reservoir polaritons to condensate polaritons. It is not possible to correlate exactly the

experimental pump laser power with the reservoir injection rate P (r) in the reservoir

equation of Equation (1.16). The latter accounts for the efficiency of all of the energy

relaxation processes that take free carriers to the reservoir population. Moreover, the

stimulated scattering rate, R, that models the conversion of reservoir polaritons is purely

phenomenological in this model. In fact, when exact population dynamics are important,

for example in modelling pulsed experiments, it is normal to resort to phenomenological

dual-reservoir models to overcome the difficulties in modelling relaxation processes

[114, 155]. Refining the simulation, for example by tuning the stimulated scattering rate,

R, may yield more accurate polariton densities and remove these discrepancies in energy.

These ODGPE simulations probe the time dynamics of the system. Notwithstanding

the small discrepancy in mode energies, they demonstrate that population of WGMs by

the experimental excitation scheme is adequately described by the ODGPE. It is also

worth noting that the numerical solutions of the time-dependent ODGPE give us the

opportunity to carefully explore how WGMs are excited because the solutions are resolved

in time. However, experimental data are currently lacking on this front, because only CW

experiments have been performed. The photoluminescence is effectively averaged over a

long collection time of the signal on the camera. Time-resolved data could be obtained

with a streak camera under pulsed excitation [30].

3.4.4 Pairs of Nearly-Degenerate Modes

The mean-field simulations also reveal pairs of nearly-degenerate modes which might be

brought to degeneracy to realise an EP. As explained in Section 3.2.2, an EP can be

reached by coupling pairs of counterpropagating WGMs using external scatterers. The EP

is reached when the combination of external scatterers induces completely asymmetrical

scattering. A small external pump spot naturally acts as an external scatterer since

it induces both a real and an imaginary potential. As shown in Figure 3.10, the peak

corresponding to the l = 23 WGM in the simulation is split in to three if the pump

spot is aligned to the edge of the trap. In (a), a portion of the spectrum taken over an

annular slice is shown. Three distinct peaks are apparent, and counting lobes of the
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corresponding energy-resolved wavefunctions, shown in (d)-(f) confirms that these three

peaks all correspond to a WGM with l = 23. Producing one-dimensional spectra by first

taking a slice across the trap diameter and then extracting the portion corresponding to

r ≈ 10 µm, shown in (b)-(c), confirms that there are three distinct peaks3. Focusing on the

energy-resolved wavefunctions in the vicinity of the pump spot reveals the structure of the

states - the lower and middle peaks correspond approximately to the even and odd WGMs,

whereas the upper peak is a combination of the two. This is also reflected in the spectrum

shown in (a), where we plot vertical lines corresponding to the antinodes of the lower peak.

The structure of the states is further clarified by computing the overlap with travelling-

wave WGMs,

α
(N)
l =

∫
ψ(N)(r)Rl(r)r

ilθr dr dθ, (3.28)

where ψ(N)(r) is the energy-resolved wavefunction corresponding to the N th peak, and

Rl(r) is the radial wavefunction of the lth WGM, whose computation is explained in

Section 3.4.2 [68]. These overlaps are shown as a function of the WGM azimuthal

quantum number, l, in Figure 3.11. This reveals that the lower two peaks consist of

a combination of propagating and counterpropagating travelling-wave WGMs weighted

in favour of the counterpropagating mode. The state corresponding to the upper peak

is almost entirely counterpropagating, which is reflected in the reduced contrast of the

energy-resolved wavefunction in Figure 3.10 (f) compared to those shown in (d) and

(e). A travelling-wave WGM has a position density which is homogeneous in θ since

its wavefunction is of the form ψl(r) = Rl(r)e
ilθ. Importantly, the peaks in Figure 3.11

(a) corresponding to l = ±23 for α(1) are both positive, whereas for α(2) one is positive

and the other is negative. The same is true for the imaginary parts. This means that

a linear combination of the two can correspond to a travelling wave, which implies the

fulfilment of the asymmetrical scattering condition for an EP. Such a combination is

shown in Figure 3.11 (j)-(l). An EP could therefore be achieved by tuning the coupling

of the underlying states with a second pump spot. These results are significant because

they demonstrate that an external pump spot can both populate WGMs also induce a

coupling between counterpropagating WGMs which could be used to tune the system to

an EP.

As explained in Section 3.2.2, EPs of WGMs can also be reached by coupling WGMs

to modes with a higher principal quantum number. This is possible because these modes

can be naturally nearly degenerate with WGMs, and because coupling can be achieved

with a small perturbation to the boundary of a WGMR. Optically-induced potentials for

polaritons can be on the order of several meV, which is comparable to the energy depth of

traps manufactured with etch-and-overgrowth techniques [26, 27]. Therefore a pump spot

focused near the edge of the trap, but mostly inside it effectively causes a small boundary

perturbation to the trapping potential seen by polaritons, illustrated in Figure 3.124. This

raises the possibility of using the pump-induced potential to couple WGMs to modes with

a higher principal quantum number and thereby achieve an EP. In Figure 3.13 (b) we

3In (c) the slice across the ring diameter must be taken 45◦ from the pump spot to reveal the middle
peak.

4For the results presented above, the pump spot is focused on the edge of the trap and hence acts as
an external scatterer
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show the computed linear spectrum including the modes with principal quantum number

n = 2 as well as the WGMs, which have n = 1. This shows that (24, 1) WGM is nearly

degenerate with the (20, 2) mode. A one-dimensional spectrum computed from ODGPE

simulations reveals two distinct peaks near the corresponding energy, with a splitting that

corresponds approximately to the energy difference between the relevant linear modes.

Examining the corresponding energy-resolved wavefunctions, shown in (c)-(e) reveals

that while the upper peak corresponds to the WGM, the lower peak is a hybridised

state consisting of both the WGM and the higher-order mode. The hybridisation implies

that the pump spot couples these two modes. It may be possible to tune this coupling

by adjusting the position of the pump spot relative to the trap edge, or by adding an

additional pump spot. Established perturbation theory for nearly-degenerate modes of

circular potentials [140] and numerical techniques for computing eigenstates [135] could

provide theoretical guidance.
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(a)

(b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10: Detail of energy splitting caused by a pump spot which acts as an external
scatter. A portion of a circular slice of the spectrum taken at the trap radius is shown in
(a), revealing three distinct spectral peaks. These are reflected in slices taken across the
diameter and resolved near the trap boundary, (b) and (d). The corresponding energy-
resolved wavefunctions are shown in (d-f), and are magnified near the pump position in
(h-i). The trap boundary is shown in white and the pump location is shown in black.
Counting the lobes of the energy-resolved wavefunctions shows that the both correspond
to the l = 23 mode. The magnified images show that the energy splitting arises from the
differing overlaps with the reservoir induced by the pump.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.11: Real part, imaginary part and absolute value of the overlaps, αNl , of the states
in Figure 3.10 with WGMs with different azimuthal quantum number, l. N increases with
energy. In (a-c), N = 1, in (d-f), N = 2, and in (g-i), N = 3. In (j-l), a linear combination

of the overlaps corresponding to the lower and middle state, c1α
(1)
l + c2α

(2)
l is shown.

Vertical lines corresponding to l = ±23 are also plotted.

Figure 3.12: Cross section of the total potential experienced by polaritons, taken along
a diameter of the trap. The pump spot is focused on the edge of the trap, and slightly
deforms the trap boundary. Note that the total potential is no longer radially symmetric.
This slice overlaps with the peak of the pump.



§3.4 Theoretical Modelling 71

(a) (b)

(c) (d)

(e)

Figure 3.13: Detail of hybridisation between modes with differing principal quantum num-
ber. A portion of a slice of the spectrum taken at the trap radius is shown in (a), revealing
two distinct spectral peaks at 7.73 meV and 7.79 meV. The corresponding energy-resolved
wavefunctions are shown in (c) and (d). The wavefunction show in (c) is magnified in
(e). Counting lobes reveals that the wavefunction shown in (d) corresponds to the l = 24
mode, whereas the wavefunction in (c) is a hybrid of this mode, and the higher-order mode
which has principal quantum number n = 2 and azimuthal quantum number l = 20. The
linear spectrum computed with the shooting method (see Section 3.4.2) is shown in (b),
including n = 2 modes. A horizontal line marks the energy of the (1, 24) mode, which is
nearly degenerate with the (2, 20) mode. The linear theory predicts an energy difference of
approximately 0.05 meV, which closely corresponds to the observed difference of 0.06 meV
in (a).
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3.5 Excitation With two Pump Spots

3.5.1 Theory

One remarkable aspect of the experimental results is the behaviour when a second pump

spot is added, illustrated in Figure 3.4. When the power of the second spot is increased,

occupation of WGMs increases rapidly, accompanied a blueshift that also increases rapidly

and then locks to exactly half a free spectral range. As discussed in Section 3.4.3, our

simulated WGMs have an excess blueshift because we are not able to exactly match the

polariton densities in the experiment. Because of this existing excess blueshift, we have not

been successful in modelling the behaviour with two pump spots in mean-field simulations.

However, we have explored a number of phenomenological models that could account

for the behaviour with two pump spots. As explained in Section 3.3, the power used

in the one-spot excitation is split between the two pump spots, so the total excitation

density with two spots is less than or equal the total excitation density with one spot.

Hence the blueshift cannot be attributed to polariton-polariton interactions associated

with the increased density. Furthermore, we have shown in Section 3.3 that the blueshift

cannot be attributed to polariton-polariton interactions - some other mechanism must be

at play.

One possible explanation is a nonlinear resonance, which has already been explored

theoretically for WGMs of polaritons in a ring geometry with coherent pumping [133]. In

this work, polariton-polariton interactions are shown to result in a nonlinear resonance

which causes blueshifts that can exceed the linear FSR. Although coherent excitation

of the resonator with a single pump spot was considered, the work is readily adapted

to incoherent excitation with two pump spots. The first pump spot simply excites

WGMs. Once they are present, the second pump spot can be regarded as a coherent

source because it injects polaritons into the mesa with a range of wavevectors, many of

which match WGMs. The theory also treats photons and excitons independently, but

this can be addressed by moving to the polariton basis. We conclude that this theory

cannot account for the experimental results because a half FSR blueshift is not favoured.

Also, the blueshift depends strongly on the polariton-polariton interaction strength. It is

unlikely that the interaction strength in the experiment and the pump powers happens to

be exactly the value that yields a half FSR blueshift for every mode. To further confirm

this, it would be possible to compare the dependence of blueshift and occupation on pump

power predicted by this theory to the experimental dependence shown in Figure 3.4 (d).

We have also considered a theory for coupling of counterpropagating optical WGMs

by multiple nanoparticles [67], with the view that a pump spot near the edge of the

mesa should have a similar effect to a nanoparticle in an optical WGMR. This theory is

explained in Section 3.2.2. The coupling causes a perturbation to the energy, which could

result in a blueshift. This theory is readily ruled out for several reasons. The coupling

causes a splitting of previously degenerate counterpropagating modes, so two WGMs

with the same azimuthal quantum number should be observed at different energies. Also,

the splitting depends strongly on the azimuthal quantum number, so it is not possible to

achieve a half-FSR blueshift for a large number of WGMs.
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(a) (b)

Figure 3.14: Schematics of a resonator side-coupled to a waveguide. (a) resonator side-
coupled to a waveguide, (b) schematic illustrating how a pair of pump spots form a sector
WGM resonator which is side-coupled to WGMs. We may consider the WGMs as waveg-
uide modes because the centripetal potential confines them near the mesa boundary.

The rapid increase in density correlated with blueshift indicates that a resonant effect

may be responsible. We conjecture that the arrangement of two pump spots creates

an effective non-Hermitian resonator inside the mesa, and that coupling between this

resonator and WGMs explains the half-FSR blueshift. Although we introduce this theory

in a phenomenological manner, it elegantly explains the experimental observations. In

addition, we are able to verify a few assumptions of this theory, demonstrate its robust-

ness, and explain how future experimental and theoretical work will help conclusively

verify it.

A theory of coupling between optical waveguides and high Q resonators in the presence

of loss and gain has been developed using scattering theory [156]. In the presence of

loss and gain, a phenomenon called critical coupling, where the transmission coefficient

drops to zero, can occur. In contrast to a resonance, which occurs when the frequency of

the waveguide mode matches that of the resonator mode, and the gain of the waveguide

mode balances the loss of the resonator mode, critical coupling is reached when the

frequency of the resonator mode matches the frequency of the resonator mode, and

loss in the waveguide mode also matches that of the resonator mode. This zero of the

transmission coefficient has physical consequences, especially for phenomena that depend

on its argument. For example, an experiment on optical waveguides coupled to microring

resonators demonstrated anomalously large time delays for waveguide wavepackets after

scattering mediated by coupling with the microring resonator [157]. The time delays are

associated with the zero in the transmission coefficient that occurs at critical coupling.

We propose that the behaviour with two pump spots is also associated with critical

coupling in our system. This theory requires a waveguide and a resonator. WMGs

are effectively waveguide modes because of the strong radial confinement given by the

effective centrifugal potential as explained in Section 3.4.1. In turn, the arrangement of

two pump spots inside the mesa creates an effective sector WGM resonator. We explained
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in Section 3.4.3, that the optically-induced potential associated with the pump spots

is on the order of several meV, sufficient to trap polaritons, and this is supported by

multiple experiments [7, 21, 29]. As we will see later, if the pump spots are close to the

mesa edge, they create a sector WGM resonator with modes confined near the edge of

the mesa, rather than modes which extend across the mesa, as illustrated in Figure 3.14

(b). The resonator modes are consequently very close in energy to whispering gallery

modes. The non-Hermitian nature of the resonator and waveguide are of fundamental

importance. The waveguide is lossy because of polariton decay, whereas the pump spots

impose gain as well as a potential barrier, both of which increase with pump power, so

the resonator can experience net loss or gain depending on the pump power. We will

first explain how critical coupling causes a half-FSR blueshift, examine how robust this

effect is to a small detuning between the resonator and waveguide, provide an account

of the resonator modes, and discuss how well this theory explains the experimental results.

The transmission coefficient for waveguide modes when side coupled to a non-Hermitian

resonator, shown in Figure 3.14 (a), is given by

t =
g + 1− i∆̃
g − 1− i∆̃

, (3.29)

where ∆̃ = ∆ω/ΓC is the detuning between the waveguide mode and the resonator

mode, ∆ω, normalised by the decay rate, ΓC , of resonator modes due to coupling with

the waveguide, and g = −ΓR/ΓC is the intrinsic resonator gain rate, ΓR, normalised

by the decay rate due to coupling with the waveguide [156]. As we have mentioned,

resonance occurs when ∆̃ = 0 and g = 1, that is when the waveguide mode is energy

degenerate with the resonator mode and the intrinsic gain of the resonator exactly

compensates the loss due to coupling with the waveguide. Critical coupling occurs

when ∆̃ = 0 and g = −1, that is, when the resonator mode is energy degenerate with

the resonator mode and the intrinsic loss of the resonator is equal to the loss due to

coupling with the waveguide. Note that ΓC is always positive, since coupling to the

waveguide modes always induces loss for the resonator. Consequently g is positive when

the resonator experiences gain. Our application of the theory is largely phenomenological.

There is no clear way to translate between polariton parameters and the loss parame-

ters, ΓR and ΓC . Although the theory treats only the coupling of a single waveguide

mode (WGM) to a nearby resonator mode, the arguments we make apply for every WGM.

In what follows, we assume that the pump strength sets the resonator gain, and

that the detuning and loss due to waveguide coupling remain approximately constant.

In reality, the pump imposes a potential as well as gain, which may affect the energies

of resonator modes. Our approximation is readily verified. From Equation (1.20), the

ratio of the imaginary part of the pump-induced potential to the real part is ~R/2gR.

For typical polariton parameters5, this ratio is approximately equal to 5, so changing

the pump power primarily increases the gain rather than the real part of the induced

potential. That is, the effective resonator is not changed much, and the detuning and

loss due to waveguide coupling remain approximately constant, whereas the loss or gain

5gR ≈ 10−4 meVµm2, which corresponds to a very photonic detuning. The parameter R is phenomeno-
logical and its value cannot be measured, but ~R ≈ 10−3 meVµm2 is typical of values used to successfully
model experiments [7].
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changes with the pump strength. As the pump strength is increased, the resonator loss

decreases, leading to critical coupling.

We now focus on the WGMs. In the absence of a resonator, the quantisation condition

for WGMs is

kL = 2lπ, (3.30)

where L is an effective cavity length, approximately the mesa circumference, and k is the

wavenumber of the mode. When the waveguide is coupled to a resonator the quantisation

condition changes because WGMs acquire extra phase from interaction with the resonator.

The quantisation condition then reads

kL = 2π

(
l +

arg t

2π

)
, (3.31)

where t is the transmission coefficient associated with scattering with the resonator,

given by Equation (3.29). We discuss the precise definition of the complex argument in

Section 3.5.2. To understand how this affects the energies of WGMs, we can conveniently

interpret the quantity arg t/2π as an effective shift to the azimuthal mode number, l. If

arg t/2π = 1/2, then the WGM experiences a blueshift that corresponds to a one-half

increase in the azimuthal quantum number. That is, a half-FSR blueshift.

To illustrate how critical coupling causes a half-FSR blueshift, we first consider a

degenerate waveguide and resonator, so ∆̃ = 0. The transmission coefficient is then

t =
g + 1

g − 1
, (3.32)

which is purely real. The transmission coefficient has a singularity when g = 1. This is

the resonance, which is not important to our theory. Instead, we focus on the behaviour

near g = −1, where the intrinsic loss of the resonator is equal to the loss due to coupling

with the waveguide. At g = −1, critical coupling occurs. The transmission coefficient is

zero, and it changes sign from positive to negative. Because of the change of sign, the

argument of t changes rapidly from 0 to π across critical coupling. Below critical coupling,

g < −1, the intrinsic loss of the resonator is greater than loss due to coupling with the

waveguide, and waveguide modes experience no blueshift. Above critical coupling, they

experience a one-half FSR blueshift due to coupling with the resonator, according to

Equation (3.31). Moreover, the transition to one-half FSR blueshift happens instantly

when critical coupling is reached. We believe this explains the rapid jump to half-FSR

blueshift seen in the experiment. The resonator loss is set by the pump strength which

accounts for the pump dependence. The drop in the transmission coefficient near critical

coupling may also explain the rapid rise in WGM population. A lower transmission

coefficient means waveguide modes - that is WGMs - are more strongly occupied. The

dependence of the coupling-induced blueshift and the transmission coefficient on the

gain are shown in Figure 3.15. Note that the induced blueshift returns to zero after the

resonance is passed.

We now address a few potential discrepancies between the behaviour predicted

by this model and experimental observations. In the experiment, WGM population
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keeps rising with pump power, whereas the coupling theory predicts that the absolute

value of the transmission coefficient will eventually increase with g, which should lead

to a decrease in the WGM population. However, our theory only applies when the

pump strength is sufficient to form an effective resonator. As the pump strength

increases the system approaches a regime where the effective resonator model is valid,

a result of the real potential induced by the pump, and the effective resonator model

approaches critical coupling, a result of the gain induced by the pump. The power

dependence observed in the experiment is then primarily caused by the system ap-

proaching the regime in which the resonator-waveguide model is valid, rather than by

the value of g changing. Since our application of the theory is phenomenological, we

are not able to easily infer the loss of the effective resonator from the polariton parameters.

Critical coupling and the jump to a one-half FSR blueshift occurs when g = −1,

that is when the resonator still experiences net loss. At first glance, net loss seems to be

incompatible with the formation of a condensate. However, g is essentially loss for the

effective resonator, not for the whole system, so a negative value of g does not preclude

the population of WGMs. The pump spots also provide gain for WGMs, and it must be

the case that the pumping provides a net gain for WGMs, but is insufficient to provide a

net gain for the effective resonator. In fact, this is consistent with the experimental data,

which indicate strong occupation of WGMs and not resonator modes, which are confined

between the pump spots.
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Figure 3.15: Coupling-induced blueshift, real part of transmission coefficient, and modulus
of transmission coefficient for ∆̃ = 0 (a-e) and ∆̃ = 0.2 (d-f) of a WGM with azimuthal
quantum number l. A small detuning shifts the root of the real part of t, lowers the
maximum blueshift, and smooths the jump in the blueshift. The singularity in |t|2 is also
removed.
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3.5.2 Effect of a Small Detuning

The picture we have presented holds only when the energies of the effective resonator

modes exactly match those of WGMs, but this is unlikely to be the case in an experiment.

We now examine the effect of a small detuning between the waveguide and resonator

mode, and provide a rough estimate of the largest detuning that still allows for a sudden

jump to half-FSR blueshift.

With nonzero detuning the transmission coefficient, Equation (3.29), can be written

as

t =
g2 − 1 + ∆̃2

(g − 1)2 + ∆̃2
− 2i

∆̃

(g − 1)2 + ∆̃2
. (3.33)

The singularity at g = 1 is now removed. That is, resonance cannot be achieved, which

is of little consequence to us. To examine how the critical coupling behaviour changes,

we need to examine the roots of the real part of t. It is easy to see that the roots now

occur at g = ±
√

1− ∆̃2 ≈ ±(1 − ∆̃2/2). Noting the denominator in Equation (3.33)

is always positive, it is easy to see that Re(t) changes from positive to negative at the

smaller root, and from negative to positive at the larger. Hence only the first root can

be associated with a jump to a half-FSR blueshift. The second root is associated with

resonance. The roots impose an obvious restriction on the magnitude of the detuning.

We must have |∆̃| < 1 to preserve the smaller root. That is, the detuning must be

smaller than the linewidth associated with loss due to coupling with the waveguide. The

dependence of t on g for a large detuning is illustrated in Figure 3.15 (d-f). Note that

the absolute minimum of |t|2 still occurs at the smaller root of Re(t), so our arguments

about rapid increase in WGM populations near critical coupling still hold. In particular,

the magnitude of the drop in |t|2 is relatively unchanged, so the detuning may not affect

WGM populations.

The presence of the smaller root is necessary, but not sufficient to preserve the jump to

half-FSR blueshift. Because the imaginary part of t is nonzero, arg(t) will not be exactly

equal to 1, and the coupling-induced blueshift will hence not be equal to one-half the

FSR. We can easily estimate how small the detuning must be to maintain the half-FSR

blueshift. When ∆̃ is positive, t is in the second quadrant of the complex plane6, and

the blueshift is given by π − arctan
(

2∆̃/(g2 − 1 + ∆̃2)
)

. The coupling-induced blueshift,

measured in FSRs is 1
2(1 − arctan

(
2∆̃/(g2 − 1 + ∆̃2)

)
/π). Setting aside for a moment

the second root of Re(t), it is clear that regardless of the value of ∆̃, the transmission

coefficient will be approximately real for large values of g, so the half-FSR blueshift is

maintained for sufficiently large values of g.

To ensure the blueshift is approximately half an FSR, we ask that

6Note that for fixed g, and small values of ∆̃ , the transmission coefficient, t is in the second quadrant
when ∆̃ is positive, and in the third quadrant otherwise. If the principal value of the argument is used,
a small change in the detuning from positive to negative would appear to cause a large change in the
coupling-induced blueshift. Clearly the branch cut of the argument should be chosen so as to ensure
that the blueshift is continuous. We emphasise that the sudden jump in blueshift associated with critical
coupling occurs because the sign of the transmission coefficient changes. It is not associated with a branch
cut.
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Figure 3.16: (a, c, e) dependence of coupling-induced blueshift, and (b, d, f )transmission
coefficient on g for a WGM with azimuthal quantum number l. Blueshift is plotted in
terms of l. Detuning is ∆̃ = 0.001 in (a) and (b), ∆̃ = 0.01 in (c) and (d), and ∆̃ = 0.1 in
(e) and (f).
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arctan
(

2∆̃/|g2 − 1 + ∆̃2|
)

< επ. For example, choosing ε = 0.2 will guarantee

that the blueshift is at least 0.4 FSRs. Linearising, we get 2∆̃|g2 − 1| < tan(επ). The

bound on ∆̃ depends on g, and is looser for larger values of g. As we have explained,

the transmission coefficient is always approximately real for large g. Of course, g cannot

be arbitrarily large because the blueshift is lost after the resonance, which occurs at

the larger root of Re(t). Although it is not possible to determine the value of g in the

experiment, it is reasonable to set g = 0 in the inequality. Since this is exactly halfway

between the two roots, we are asking that the blueshift reaches approximately half an

FSR well before the resonance is reached. With ε = 0.2, we get ∆̃ < 0.1. However,

∆̃ = ∆ω/ΓC depends on the resonator loss due to coupling with the waveguide, and this

cannot easily be computed. If we approximate ΓC by the polariton decay rate, γC , which

is on the order of 10−1 ps−1 we see the detuning should be on the order of 10−2 meV.

Although the polariton decay rate is the only other intrinsic loss rate in the system, it is

likely to be a poor estimate of the coupling loss. We expect the coupling loss to be much

lower than the polariton decay rate, which will relax the bound on ∆̃. In Figure 3.16

we show the coupling-induced blueshift and transmission coefficient for various values of

∆̃, confirming that ∆̃ < 0.1 is sufficient to ensure that the coupling-induced blueshift

reaches half an FSR. We also note that the dip in |t|2 is preserved for moderate detuning,

so WGMs should be populated and resonator modes will not be populated. Since the

transmission coefficient does not change substantially with ∆̃, the detuning will not affect

the population of WGMs.

3.5.3 Effective Resonator

Our explanation hinges on the hypothesis that the arrangement of two pump spots

creates an effective resonator whose modes are close in energy to WGMs. In this section

we provide a simple model of the effective resonator created by the real part of the

pump-induced potential, and show that the energies of its modes are close to those of the

WGMs. However, we are still not able to infer the intrinsic loss of the effective resonator,

nor the loss induced by coupling with WGMs.

The pump-induced potential is on the order of several meV [21, 29], which is

approximately equal to the potential barrier responsible for the trapping of WGMs.

Since the pump spots are close to the edge of the mesa, we can model the effective

resonator as a sector WGM resonator, shown in Figure 3.14 (b). A sector resonator

approximation of a notched WGM resonator has also been used to explain mode selection

in electrically-driven quantum dot microring cavities [158].

The theoretical treatment of a sector WGM resonator differs little from a normal

WGM resonator [159]. After separation of variables as in Section 3.4.1, the angular

quantisation condition is Y (0) = Y (θ0), where Y (θ) is the angular wavefunction and θ0

is the angular size of the resonator. The azimuthal quantum number is hence quantised

as l = 2πn/θ0, as opposed to l = n for a full WGM resonator. Given a value of l, the

mode energies are easily computed by numerically solving for the radial wavefunction

as in Section 3.4.1. The energy is a continuous function of l, so we can view sector
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(a) (b)

Figure 3.17: (a): Energies of the modes of the effective sector resonator formed by the
two pump spots, (b): detuning from Whispering Gallery Modes. The angle between the
pump spots is 0.51π.

WGMs as WGMs with a non-integer value of l, and consequently a different energy. The

arrangement of two pump spots actually creates two sector resonators, one with angular

size θ0, and the other with angular size 2π − θ0.

In the experiment the angle between the pump spots is approximately π/2. With

θ0 = π/2, the two effective resonators are identical and the azimuthal quantum number

for sector resonator modes is given by l = 4n, so the sector resonator simply supports

every fourth WGM. This means that the detuning between resonator modes and WGMs

is either zero or substantial - several FSRs, so it is not assured that every has a resonator

mode close enough in energy to cause a half FSR blueshift.

In reality, the angle between the pump spots will not be exactly π/2 because the

alignment of the laser cannot be controlled with sufficient precision. As shown in

Figure 3.17, a small deviation from θ0 = π/2 actually results in many resonator modes

being close in energy to WGMs. This is simply because the two effective resonators

now have different angular sizes. Clearly the detuning from resonator modes varies

between different WGMs, but we have shown that this should not strongly affect the

population of different WGMs. In addition, since the blueshift does not depend strongly

on the resonator-waveguide detuning, different WGMs may experience the same coupling

blueshift despite the different detuning. Besides, the resonator loss due to coupling may

be so large and the normalised detuning hence so small that this variation does not matter.

We have also investigated the dependence of the detuning on the angle between

the pump spots. For each angular size of the effective resonator we compute the

detuning of each WGM from the sector resonator mode closest in energy. It is clear

that regardless of the angle between the pump spots, most WGMs have ∆̃ . 0.1 meV,

and the maximum detuning of any WGM is on the order of 0.5 meV. These detunings

are several times larger than the bound we derived in Section 3.5.2, but still within

an order of magnitude. As we explained, this bound depends on the loss experienced

by the effective resonator due to coupling with the waveguide, and this is difficult

to estimate. We expect that our estimate is too high, and the bound is looser than

we have computed, so the detunings should fall well within the true bound. We
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have hence shown that the WGMs may be sufficiently close in energy to the modes

of the resonator to maintain the jump to half-FSR blueshift. In addition, we have

shown that the maximum detuning does not depend strongly on the angle between the

pump spots. It should be possible to observe the same effect for any angle between the

pump spots, which is an important prediction that can be tested with further experiments.

Figure 3.18: Detuning between energies of WGMs and the modes of the effective resonator
for different angular separations, θ0, between the pump spots. For each value of θ0, we
compute the detuning for WGMs with mode numbers between 0 and 50. We plot the
maximum and minimum detunings, as well as the median and middle quartile. It is
clear that regardless of the angular separation, almost all WGMs are close in energy to
a resonator mode. In fact, the most extreme detunings are likely still small enough to
guarantee a coupling-induced blueshift equal to half a free spectral range. Note that the
dependence is symmetrical around θ0 = π due to the formation of two effective sector
resonators with angular separation θ0 and 2π − θ0.

Demonstrating coupling-induced blueshift for only a few modes that have a sufficiently

small detuning from resonator modes, as opposed to all modes, would be compelling

evidence for our theory. This would best be done by selecting an angle between the pump

spots that results in a small detuning for only a subset of WGMs. We have shown that this

is likely not possible for the trap we have studied, since most WGMs have only a small

detuning from resonator modes regardless of the angle between the pump spots. The

dependence of WGM energy on azimuthal quantum number is affected by both the trap

size and depth. If this dependence is strong enough, it may be possible to achieve detunings

large enough that not all WGMs experience a coupling-induced blueshift. However, work

in this direction will have to be supported with firm theoretical estimates of the resonator

loss due to coupling with WGMs so that the normalised detuning can be estimated.
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3.6 Conclusions and Further Work

Motivated by a recent experiment, we have investigated WGMs of polariton condensates

confined in a circular trap, which is imprinted by locally lengthening a small part of the

optical microcavity during sample manufacture. In the experiment, whispering gallery

modes of this potential are excited by shining either one or two pump spots near the edge

of the potential. With one spot, many WGMs are excited. When two pump spots are

used, the same modes are occupied, but they are blueshifted by exactly half a free spectral

range. The power of the second pump spot is varied from zero to equal with the first

pump spot, revealing that the blueshift increases rapidly with power, quickly locking to

half an FSR. In addition, the population of the modes increases rapidly with the power of

the second pump spot. We have shown that the energies of these WGMs can be predicted

using simple linear theory - polariton populations are low enough that the WGMs are not

blueshifted by polariton-polariton interactions. Moreover, we have used numerical sim-

ulations of the time-dependent ODGPE to verify that the pumping scheme excites WGMs.

We have explained the blueshift observed with two pump spots by phenomenologically

applying a scattering theory analysis of coupling between a non-Hermitian waveguide and

resonator. We treat the WGMs as waveguide modes and assume that the arrangement

of two pump spots creates an effective resonator whose intrinsic gain varies with the

pump power. WGMs gain phase from the coupling with the resonator, quantified by the

argument of the transmission coefficient. This modifies the quantisation condition and

hence energies of WGMs. When the detuning between a resonator mode and waveguide

mode is zero, the transmission coefficient is purely real, and depends on the intrinsic

loss of the resonator, which is set by the gain from the pump. When the intrinsic loss

is exactly equal to the loss induced by coupling to waveguide modes, the transmission

coefficient is zero, and changes sign from positive to negative. Consequently, its argument

jumps rapidly from 0 to −1, and this sudden jump explains exactly why every WGM

experiences a half-FSR blueshift.

If the resonator mode is slightly detuned from the waveguide mode, the transmission

coefficient is complex, the jump in the coupling-induced blueshift is smoothed, and the

maximum blueshift is slightly reduced from half an FSR. We have provided bounds on the

maximum detuning that preserves a jump to half-FSR blueshift. We have also explained

qualitatively how the experimental arrangement of two pump spots creates an effective

resonator. With a simple approximation we are able to compute the energies of the

modes of this effective resonator, demonstrating that they are likely close enough to those

of WGMs to explain the experimental observations. However, a precise comparison is not

available because we do not yet have a theoretical estimate of the losses experienced by

the effective waveguide.

There is still much scope for further work. Although our mean-field simulations

demonstrate that WGMs can be populated by the experimental excitation scheme, we are

not able to populate as many WGMs as in the experiment. To address this discrepancy

we will likely need to carefully account for energy relaxation processes in our model

[17, 160]. It may be possible to adapt work that provides a theoretical treatment of

parametric scattering in ZnO microwires [124]. In any case, time-resolved experimental
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measurements, rather than the current time-averaged ones will be vital, and will also

allow us to compare time dynamics with numerical predictions.

More theoretical and experimental work will allow us to verify our explanation of

the blueshift. The scope for experimental work is somewhat limited because optical

excitation creates gain and a real potential, and the theory is best tested by varying only

the gain of the non-Hermitian resonator. An additional difficulty is that the theory only

applies when the real part of the pump-dependent potential is large enough that the

spots act as an effective resonator. This places limits on the pump power and hence g

in Equation (3.29). Also, the maximum pump power is limited by the damage threshold

of the sample. Repeating the measurements at a different photon-exciton detuning

may allow us to access different values of g because the stimulated scattering rate and

polariton-reservoir interaction strength both depend on the detuning [2], and hence so

does the strength of the real part of the pump-induced potential relative to the imaginary

part. With a different detuning, the pump will create an effective resonator with a

different value of the gain. However, the detuning also effects polariton energy relaxation

efficiency [6, 134], and at a different detuning relaxation may be too strong to populate

WGMs which have large azimuthal quantum numbers.

The theoretical parameter g is defined as the intrinsic resonator gain normalised by

the loss due to coupling with WGMs, but we currently lack a theoretical estimate of

the latter. Without this, we are unable to quantify how much g changes with pump

power. Establishing a theoretical estimate of this quantity will help us test the theory.

In principle, this is possible by adapting the scattering theory [156]. It will be necessary

to carefully compute the resonator modes. This could be done by computing the modes

of the system accounting for the pump-dependent potential, and identifying which are

resonator modes. A pump spot on the mesa boundary could be treated as a boundary

deformation. In this case, the boundary element method can be used to exactly compute

the modes [135]. However, separating the intrinsic resonator loss from the loss due to

coupling with WGMs may still be challenging.

It is simple to independently set the real and imaginary parts of the pump-dependent

potential in numerical simulations by choosing the prefactors of the pump-dependent

terms after the reservoir is eliminated from the ODGPE (Equation (1.20)). By setting

the imaginary part independently, we can control the gain of the effective resonator,

which will allow us to make a number of comparisons with theoretical predictions to more

robustly demonstrate critical coupling. Filtering in energy will allow us to identify modes

of the effective resonator and verify that their occupation drops and then revives through

critical coupling. Most importantly, simulations will allow us to investigate large values of

g, which is not possible in experiment. The maximum pump power, and hence value of g,

is limited by the damage threshold of the sample. With increasing g, the blueshift should

drop back to zero. Additionally, as g becomes large enough to approach the resonance,

the occupation of resonator modes should increase substantially. Observing resonance

would be a crucial piece of evidence to demonstrate both the formation of an effective

resonator, and coupling between this resonator and WGMs.
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Finally, we have presented some preliminary results that indicate it may be possible

to achieve an EP by coupling degenerate counterpropagating WGMs. Using mean-field

simulations, we have demonstrated that a laser spot focused on the trap boundary not

only populates WGMs, but also induces a small energy splitting between even and odd

parity WGMs with the same azimuthal quantum number. We have also shown that it will

be possible to achieve a mode with unidirectional propagation, and hence an EP by tuning

the coupling between these modes. The obvious next step is to verify, using mean-field

simulations that a pair of scatterers can induce an EP. Most importantly, it is necessary

to check whether there exists a regime in which a pair of pump spots scatters propagating

WGMs sufficiently, but does not lead to the formation of the effective resonator. It

will also be necessary to check the sensitivity of this behaviour to the position of the

pump spots. Moving the pump spots closer to the resonator boundary will alter the

scattering strength, but some movement will be unavoidable in any real experiment due

to mechanical vibrations. It may be possible to use the Boundary Element Method

developed for optical WGMRs [135] for many of these tasks rather than time-resolved

mean field simulations.

We have also presented preliminary evidence of hybridisation of a WGM and a nearly

degenerate mode with a higher principal quantum number. This raises the possibility

of achieving an EP by coupling these modes. It has already been established that this

coupling can be achieved for optical WGMRs by perturbing the resonator boundary. In our

case, the potential induced by the pump spot is sufficiently large that a pump spot placed

just inside the mesa effectively modifies the resonator boundary. As we have mentioned, a

perturbation theory for nearly-degenerate modes of a circular resonator with a perturbed

boundary has been developed. It will be straightforward to apply this theory to our system

to verify that the pump spots provides a perturbation that is sufficient to induce an EP.



Chapter 4

Conclusions and Further Work

Exciton polaritons are hybrid matter-light quasiparticles that can undergo Bose-Einstein

condensation at temperatures as high as room temperature. Because of their hybrid

light-matter nature, exciton polariton condensates are an attractive platform for realising

optoelectronic devices. In contrast to Bose-Einstein condensates of atoms, exciton

polariton BECs are inherently open systems as they experience loss and gain. This loss

and gain allows for the exploration of non-Hermitian physics, including PT symmetry

and EPs. These effects have been extensively explored in optics but are largely ignored

in polariton condensates.

We have investigated a nearly-PT symmetric square well for polariton condensates,

which can be created by combining a real potential created using an etch-and-overgrowth

technique with an imaginary potential induced by a laser pump. However, such a potential

will only be approximately PT symmetric since the fixed polariton loss is combined with

a varying gain, and the pump also induces a real potential. Using a linear theory, we

have demonstrated that although the asymmetries remove the PT symmetry breaking

transition and associated EP, both can be restored by slightly shifting the position of

the pump. These results must still be verified with mean-field simulations to account for

nonlinearity and population dynamics. Nevertheless, they provide guidance for a future

experimental test of some predictions of PT symmetric quantum mechanics in a truly

quantum system.

Guided by recent experimental results, we have also investigated WGMs of polaritons

in a circular trap. Using a simple linear theory we are able to accurately model the

WGM energies, and using mean-field simulations we have verified that these modes

are populated by the pumping scheme. We have also provided a phenomenological

explanation for the behaviour when excited with two spots. When a second pump

spot is added, all of the WGMs experience a one-half FSR blueshift and a large rise in

occupation. This can be explained by coupling to an effective resonator formed by the

two pump spots. Coupling to this resonator changes the quantisation condition and hence

energy of WGMs. In particular, in the vicinity of critical coupling, where the transmission

coefficient becomes zero, the argument of the transmission coefficient rapidly changes,

causing the sudden jump to a half FSR blueshift. Although we have applied this theory

phenomenologically, several key details have been verified. Mean-field simulations will

conclusively demonstrate its validity.
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Mean-field simulations of the circular trap excited with a single pump spot have also

revealed pairs of nearly-degenerate modes that can be coupled to achieve an EP. A pump

spot placed outside the trap both populates WGMs and scatters counterpropagating

WGMs; it may be possible to tune the scattering using a second pump spot to achieve

an EP, an idea which can be explored with further mean field simulations. In contrast

a pump spot placed just inside the mesa acts as an effective deformation to the mesa

boundary, which can couple WGMs to nearly-degenerate modes with a higher principal

quantum number. We have found such a pair of modes with linear simulations, and

demonstrated preliminary evidence for their hybridisation in mean-field simulations. A

perturbation theory for nearly degenerate modes of circular potentials as well as numerical

techniques for computing modes of two-dimensional cavities will help provide theoretical

guidance to engineer a pumping scheme that drives these modes to degeneracy. Together,

these results are a first step towards future experiments which will demonstrate EPs

of polariton WGMs. This would be an exciting result since polaritons are a promising

system for new optoelectronic devices, and EPs of optical WGMs have already been used

to demonstrate a number of useful effects.



Bibliography

[1] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton Bose-

Einstein condensation. Reviews of Modern Physics, 82(2):1489–1537, may 2010.

doi: 10.1103/RevModPhys.82.1489.

[2] J. J. Hopfield. Theory of the Contribution of Excitons to the Complex Dielectric

Constant of Crystals. Physical Review, 112(5):1555–1567, dec 1958. doi: 10.1103/

PhysRev.112.1555.

[3] Yongbao Sun, Patrick Wen, Yoseob Yoon, Gangqiang Liu, Mark Steger, Loren N.

Pfeiffer, Ken West, David W. Snoke, and Keith A. Nelson. Bose-Einstein Condensa-

tion of Long-Lifetime Polaritons in Thermal Equilibrium. Physical Review Letters,

118(1):016602, jan 2017. ISSN 0031-9007. doi: 10.1103/PhysRevLett.118.016602.

[4] I. A. Shelykh, G. Malpuech, and A. V. Kavokin. Bogoliubov theory of Bose-

condensates of spinor exciton-polaritons. physica status solidi (a), 202(14):2614–

2620, nov 2005. ISSN 1862-6319. doi: 10.1002/pssa.200562000.

[5] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling,

F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Little-
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[26] O. El Däıf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli,

F. Morier-Genoud, and B. Deveaud. Polariton quantum boxes in semiconductor

microcavities. Applied Physics Letters, 88(6):061105, feb 2006. ISSN 0003-6951.

doi: 10.1063/1.2172409.

[27] Pierre Lugan, Davide Sarchi, and Vincenzo Savona. Theory of trapped polaritons in

patterned microcavities. physica status solidi (c), 3(7):2428–2431, aug 2006. ISSN

1610-1634. doi: 10.1002/pssc.200668045.

[28] Karol Winkler, Julian Fischer, Anne Schade, Matthias Amthor, Robert Dall, Jonas

Geßler, Monika Emmerling, Elena A Ostrovskaya, Martin Kamp, Christian Schnei-
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